The Role of MYC in RET Fusion Tumorigenesis and RET Inhibitor Resistance

Background & Review of Literature

Non-Small-Cell Lung Cancer

- Lung cancer is the leading cause of cancer deaths worldwide
 - Non-small-cell lung cancer (NSCLC) accounts for 85% of all diagnoses
- 5-year survival rate of 15.6% ~1,180,000 deaths per year
- NSCLC mainly treated with surgery and chemotherapy,
 - Only ~20-30% of disease respond

1,180,000

NSCLC deaths each year

Personalized Medicine

- Standard treatments only effective for subset of the population
 - o Patients diagnosed with the same subtype have different genetic causes
- Identifying driving mechanisms opens avenues for targeted therapies
 - Greater efficacy and safety compared to standard approach

Treatment Resistance in RET Fusion NSCLC

- RET encodes for a transmembrane receptor associated with cell proliferation, migration, & differentiation
- RET-fusions can be treated with RET inhibitors Selpercatinib, pralsetinib, and cabozantinib
- Resistance to RET inhibitors frequently occurs but
- mechanisms of resistance are poorly defined
- RET inhibitor application decreases MYC levels

- MYC is a family of 'master regulator' transcription factors
- Regulates ~15% of all genes and is dysregulated in >70% of all cancers)
- Our objective was to determine the role of MYC in RET fusion NSCLC tumorigenesis and treatment resistance

Methodology, Results, and Discussion

Impact and Application

- Connection between MYC and RET allows for development of new therapeutic approaches
- New personalized approaches will have improved effectiveness
- RET fusions present in ~3% of NSCLC
 - Based on an estimated 1.87 million NSCLC cases, this has potential to benefit 56,100 patients per year

56,100Patients benefited per year

- RET fusion NSCLC is usually seen in young, never-smokers
 - Particularly benefits these groups
- Applications to other cancers
 - Thyroid, medullary, breast

Benefits young, never smokers

Student and Mentor Roles

Student Role

- Idea for the study
- Design of purposes and methods
- All data collection
- Determination of results, conclusions, implications and future research

Mentor Role

- Consulting in design of methods
- Cell line generation
- Verification of results, conclusions, implications, and future research

Conclusion

Goal

Determine the role of MYC in RET-fusion tumorigenesis and RET inhibitor resistance

Results

- Hypotheses were supported
 - 1) *RET* fusions increase MYC levels by stabilizing the MYC protein
 - MYC overexpression is a mechanism of resistance to RET inhibitors in NSCLC
- MYC plays a key role in *RET* fusion tumorigenesis and resistance to current therapies

Future Focuses

- Develop & test combined anti-RET anti-MYC therapy in mice
- Determine more comprehensive model of MYC upregulation with additional inhibitory approaches
 - MYC shRNA, dox-inducible MYC system, Omomyc
- Test more *RET* fusion variants
- Verify MYC stabilizing mechanism

Global Impact

- Benefits over 50,000 patients per year
- Benefits young, never-smokers
- Applications to other cancers