MLOffense: Multilingual Offensive Language Detection and
Target Identification On Socilal Media
Using Graph Attention Transformer Model

Problem & Objectives

Social media has become an important part of our everyday lives. However,

Data Analysis & Results

MLOffense was statistically evaluated on languages with available datasets for four

offensive language on social media has become a serious issue. Problems

include but are not limited to:

» Fear, anxiety, isolation, and mental health problems for

targeted individuals

Discrimination against certain groups of people (e.g.,

race, gender, ethnicity, sexual orientation)

Negative impacts on the overall online environment

Contributes to the spread of stereotypes and biases
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tasks in terms of F1 scores;:
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Tragically losing a friend to cyberbullying, I was motivated to combat the

iIssue of offensive language on social media, leveraging my background in

computational linguistics.

Challenges
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German

» Use of graph attention mechanisms

» Most existing studies are limited to
English due to limited labeled training >
data in low-resource languages

» Development of a novel multilingual
model for 100 languages
Use of transfer learning to leverage
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existing English resources

» Break new ground as the first study ever
to identify the specific individuals or
groups targeted by offensive posts.

» An app to allow social media users to
filter out offensive posts, balancing users’
mental health with freedom of speech

» Different ways of expressing offense

* Diversity of languages

» No studies on identification of the
target

Code-mixing

DeepOffense  0.7123 0.7167

Task B: Targeted or Not
Arabic
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Weighted F1 Scores
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Model Design N
Task C: Individual, Group, or Other

ighted F1 Scores English Arabic Chinese
MLOffense 0.7468 0.7091 0.7262
DeepOffense 0.7289 0.6522 0.6950

Transformers are a type of neural network architecture for sequential data.
“Attention” used to weigh the importance of different parts of the data differently.
Allows for more effective learning of the context and relationships within the
data.
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Offensive Tweets Targeting Races and Ethnicities

Multilingual Offensive Language Detector and Target Identifier
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Novel Graph Attention:

Offensive, Targeted, and for Individual

Offensive Tweets Targeting Religions

» Replace self-attention in conventional
transformer with graph attention

» Pay more attention to words closer in
syntactic distance (see example)
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Conclusions Future Work

Model Training

» Useful for detection and potentially
prevention of online offensive
language

» To leverage emerging large language
models like GPT-4

» To classify a spectrum of offensiveness

» More training data with the ever-
changing nature of language

» To incorporate linguistics and
psychology knowledge

» To perform comprehensive social
science studies

Learn to understand or “speak” different languages: pretrain in 100 languages
with general content CommonCrawl datasets

Learn to detect offensive content even w/o offensive words » Optional social media plug-in for

users to filter out offensive posts
» Extracts data for behavioral and

social science research

« Analyze prevalence and causes
ldentify and support victims

CommonCrawl
dataset in 100
languages

Zero-shot cross-lingual transfer learning with

benchmark offensive datasets in English

Offensive
detection in

Training datasets: 100 languages

OLID + HASOC + TweetNERY

Offensive
dataset in
English °
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