MLOffense: Multilingual Offensive Language Detection and Target Identification On Social Media **Using Graph Attention Transformer Model**

Problem & Objectives

Social media has become an important part of our everyday lives. However, offensive language on social media has become a serious issue. Problems include but are not limited to:

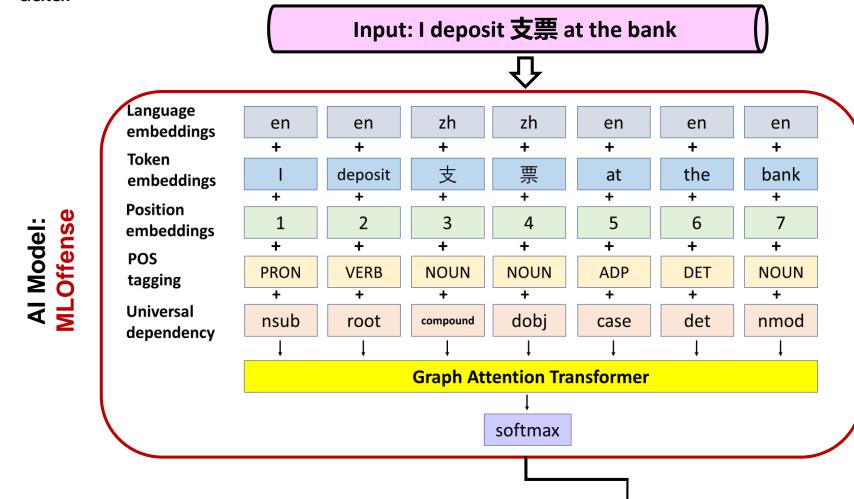
- Fear, anxiety, isolation, and mental health problems for targeted individuals
- Discrimination against certain groups of people (e.g., race, gender, ethnicity, sexual orientation)
- Negative impacts on the overall online environment
- Contributes to the spread of stereotypes and biases

Image created by Al

Tragically losing a friend to cyberbullying, I was motivated to combat the issue of offensive language on social media, leveraging my background in computational linguistics.

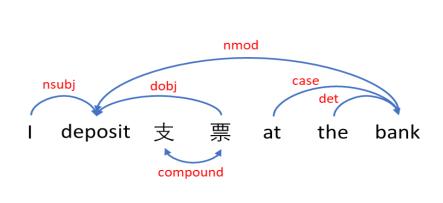
Challenges

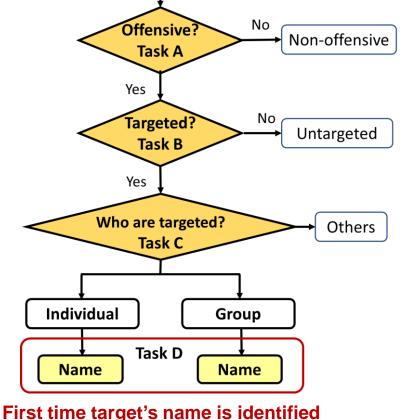
- Most existing studies are limited to English due to limited labeled training data in low-resource languages
- Different ways of expressing offense
- Diversity of languages
- No studies on identification of the target


My Contributions

- ➤ Use of graph attention mechanisms
- > Development of a novel multilingual model for 100 languages
- ➤ Use of transfer learning to leverage existing English resources
- Break new ground as the first study ever to identify the specific individuals or groups targeted by offensive posts.
- An app to allow social media users to filter out offensive posts, balancing users' mental health with freedom of speech

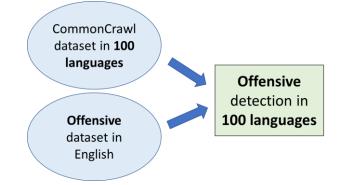
Model Design


- Transformers are a type of neural network architecture for sequential data.
- "Attention" used to weigh the importance of different parts of the data differently.


Allows for more effective learning of the context and relationships within the data.

Novel Graph Attention:

- Replace self-attention in conventional transformer with graph attention
- Pay more attention to words closer in syntactic distance (see example)



Model Training

- Learn to understand or "speak" different languages: pretrain in 100 languages with general content CommonCrawl datasets
- Learn to detect offensive content even w/o offensive words
- Zero-shot cross-lingual transfer learning with benchmark offensive datasets in English
- Training datasets:

OLID + HASOC + TweetNER7

Data Analysis & Results

MLOffense was statistically evaluated on languages with available datasets for four tasks in terms of F1 scores:

Task A: Offensive or Not

lask A. Ollelisive of Not					
		Macro	Weighted	Offensive	Non- Offensive
English	MLOffense	0.8461	0.8531	0.8252	0.8670
	DeepOffense	0.8126	0.8228	0.7818	0.8433
Arabic	MLOffense	0.7848	0.7862	0.7793	0.7904
	DeepOffense	0.7148	0.7198	0.6941	0.7356
Chinese	MLOffense	0.8361	0.8388	0.8192	0.8530
	DeepOffense	0.7743	0.7794	0.7426	0.8060
Marathi	MLOffense	0.6924	0.6936	0.6614	0.7233
	DeepOffense	0.6087	0.6088	0.6070	0.6104
Spanish	MLOffense	0.8348	0.8365	0.8228	0.8468
	DeepOffense	0.7788	0.7801	0.7692	0.7883
Italian	MLOffense	0.8198	0.8211	0.8123	0.8272
	DeepOffense	0.7616	0.7619	0.7601	0.7632
German	MLOffense	0.8333	0.8344	0.8291	0.8375
	DeepOffense	0.7650	0.7656	0.7629	0.7672
Hindi	MLOffense	0.7937	0.7991	0.7690	0.8183
	DeepOffense	0.7051	0.7084	0.6902	0.7200
Code-mixing	MLOffense	0.8081	0.8081	0.8082	0.8080
	DeepOffense	0.7123	0.7167	0.6755	0.7491

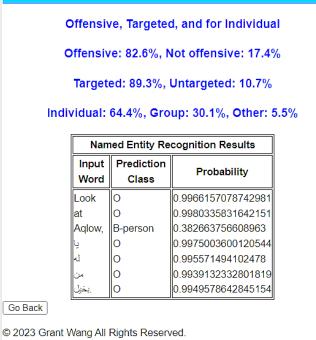
Task B: Targeted or Not

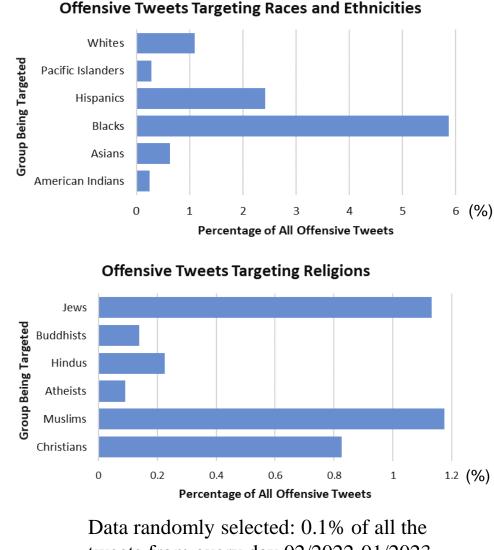
Weighted F1 Scores	English	Arabic	Chinese	Marathi
MLOffense	0.7963	0.7127	0.7828	0.6394
DeepOffense	0.7609	0.6583	0.7359	0.5780

Task C: Individual, Group, or Other

Weighted F1 Scores	English	Arabic	Chinese	Marathi
MLOffense	0.7468	0.7091	0.7262	0.6117
DeepOffense	0.7289	0.6522	0.6950	0.5568

Task D: Name Recognition


Tack Bi Hame Recognition				
Weighted F1 Scores		English	Arabic	Chinese
MLOffense	Person	0.8118	0.7426	0.7696
	Group	0.7312	0.6621	0.6807


Demonstrations

Demo #1 – App to detect multilingual

Demo #2 – Example to extract data from X offensive language on social media for behavioral and social science research

Multilingual Offensive Language Detector and Target Identifier Enter your message here ! يا له من بخيل Look at Aqlow, Predict **MLOffense**

tweets from every day 02/2022-01/2023

Conclusions

- Useful for detection and potentially prevention of online offensive language
- > Optional social media plug-in for users to filter out offensive posts
- > Extracts data for behavioral and social science research
 - Analyze prevalence and causes
- Identify and support victims

Future Work

- > To leverage emerging large language models like GPT-4
- > To classify a spectrum of offensiveness
- > More training data with the everchanging nature of language
- > To incorporate linguistics and psychology knowledge
- > To perform comprehensive social science studies