USING COMPUTER VISION TO DISENTANGLE
FEATURES ENABLING AI TO LEARN SELF-REPORTED

RACE AND ETHNICITY FROM MEDICAL IMAGES

INTRODUCTION METHODS

The Danger of Algorithmic Bias in Healthcare Discovering Hidden Signals Using CNNs

A 2019 clinical Artificial Intelligence (Al) applied to ~200 million Americans My goal was threefold: (1) to identify key image features that could be
underdiagnosed patients of color by 50%. hidden signals, (2) to extract each feature from RVMs, and (3) to train an Al
it AL IN MEDICAL IMAGING MARKET SIZE, 2021 T0 2030 (USD BILLION) model to learn race and ethnicity from the isolated feature to assess its
5208 individual significance.
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Al-powered medical imaging tools are expanding and exacerbating
inequity in clinical care for Black and Brown patients, and other
vulnerable communities.

Al Can Learn Self-Reported Race And Ethnicity

In 2021, Al models were trained to recognize patients’ self-reported race and
ethnicity from medical images, even when there are no indications of race or
ethnicity visible to human experts. This has stumped experts worldwide.
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from RVMs with AU-ROCs from 92.0 to 95.0.

RESEARCH GOAL

Discover the hidden signals in retinal images that enable If the model trained on an isolated feature performs better than random
algorithms to learn self-reported race and ethnicity. in detecting self-reported race and ethnicity on a modified test set, we
infer that the specific RVM feature is a hidden signal!
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