Extremal Bounds on Peripherality Measures

Introduction

Graphs are mathematical structures, consisting of vertices
and connections between them, called edges. These
structures have been used to study many real-world
phenomena, such as an infection spreading through a
population. For example, a person who maintains a lot of
social connections during an epidemic tends to be especially
likely to spread a contagious disease; in the context of graph
theory, such a person is considered to be central to the
social network. Conversely, someone whose lack of social
connections makes them unlikely to spread a contagious
disease would be considered peripheral to the social network.
There are several numerical measures of centrality and
peripherality in the literature, which quantify the extent to
which vertices or edges in a graph are central or peripheral
and can be computed based on the structure of the graph.
Centrality and peripherality also have applications in
chemical reaction systems and neural networks. In chemical
reaction systems, centrality measures can be used to
determine the most important chemicals. In neural
networks, peripheral vertices are slower to affect the flow of
information, so peripherality measures can be used to
analyze the efficiency of neural networks. Besides centrality
and peripherality measures, there are also measures of graph
unbalancedness, which quantify the extent to which graphs
contain both central and peripheral vertices. We investigate
measures of peripherality called the peripherality index, edge
peripherality, and edge sum peripherality, and an
unbalancedness index called the Trinajsti¢ index. We
present results about the maximum peripherality and the
minimum and maximum unbalancedness of n-vertex graphs.

Preliminaries

The distance between two vertices, u and v, of a graph G is
the minimum number of edges that can traversed to get
from u to v, and it is denoted d(u, v). To ensure that this
quantity is always defined, all graphs discussed are assumed
to be connected, meaning that it is possible to traverse
between any pair of vertices. Define ng(u, v) to be the
number of vertices x of G such that d(x, u) < d(x,v). In
other words, it is the number of vertices that are closer to u
than to v. Naturally, a vertex u for which n¢g(u, v) tends to
be relatively small can be considered to be peripheral, and a
vertex u for which ng(u, v) tends to be relatively large can
be considered to be central.

Peripherality Index

The peripherality index of a vertex, denoted by peri(v), is
the number of vertices u such that ng(u, v) > ng(v, u).
The peripherality index of a graph is defined as

peri(G) = > peri(v).
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The exact maximum possible value of peri(G) over n-vertex
graphs and over n-vertex trees was previously known to be
equal to ('2’) for all n > 9. We complete this result by
computing these maxima for all n < 8. The main technique
used to identify the cases in which (’2’) is not achievable is
the observation that if G has vertices u, v and a nontrivial
automorphism that maps v to v, then ng(u, v) = ng(v, u),
preventing peri(G) from achieving (3).

One graph that achieves each maximum is shown below,
along with its peripherality index.

Graph Tree |

n
e e
2 6
15
3
A
4 21
3 8
| 28

References

n Graph Tree

13

27

Trinajsti¢ Index

The Trinajsti¢ index of a pair of vertices is defined as NT({u, v}) = (ng(u, v) — ng(v, u))>. Note that {u, v} need not be an

edge and that the order of u and v does not matter. The Trinajsti¢ index of a graph is given by NT(G) = > NT({u,v}).
{u,v}cV
We refute two conjectures about graphs that minimize and maximize the Trinajsti¢ index.

The first of these conjectures is that the Trinajsti¢ index of an n-vertex graph is maximized by taking a complete subgraph with
half of the vertices and attaching a pendent vertex to each vertex of the subgraph. This graph has a Trinajsti¢ index of

%n“(l + o(1)). We disprove the conjecture by proving that the spider graph S, with a legs of b vertices each achieves a greater
Trinajsti¢ index when a and b both go to infinity. In fact, NT(S,5) = 2n*(1 — o(1)), which achieves the greatest possible leading
term. Examples of both graphs are shown below.

Example of the graph described by the refuted conjecture The spider graph S5 3

on maximizing NT(G), with n = 16 vertices.

The second conjecture is that every graph with a Trinajsti¢ index of 0 is a regular graph (meaning that every vertex has equally
many neighbors). Examples of such graphs include the complete graph K, the complete bipartite graph K, ,, and the cycle C,.
Note that the condition NT(G) = 0 is equivalent to the condition that all pairs u, v of vertices satisfy ng(u, v) = ng(v, u). Call
a graph NT-balanced if it satisfies this condition. We first disprove the conjecture by supplying two NT-balanced graphs that are
not regular, namely the graphs of the rhombic dodecahedron and the rhombic triacontahedron (which have 14 and 32 vertices,
respectively). Due to the symmetries of these graphs, only two pairs of vertices of the rhombic dodecahedron and three pairs of
vertices of the rhombic triacontahedron need to be checked manually for the condition that ng(u, v) = ng(v, u) to confirm their
NT-balancedness.

The graph of the rhombic dodecahedron
The graph of the rhombic triacontahedron

It turns out that there are not just two, but infinitely many counterexamples to the second conjecture. To generate these
counterexamples, we first strengthen the condition of NT-balancedness. For any integer a, define n,(u, v) to be the number of
vertices, x, such that d(x, u) < a+ d(x,v). Then call a graph ultra NT-balanced if every pair u, v of vertices satisfies

n,(u, v) = ny(v, u). Since ny and n¢ are equivalent, we have that every ultra NT-balanced graph is also NT-balanced. It turns
out that Kj,, K, C,, and the graphs of the rhombic dodecahedron and the rhombic triacontahedron are also ultra NT-balanced.
The critical observation is that the Cartesian product of two ultra NT-balanced graphs is, itself ultra NT-balanced. From this
observation, there are many ways to generate infinitely many irregular graphs with Trinajsti¢ index 0, such as taking the product
of the rhombic dodecahedron graph with K, for arbitrary n.

Edge Peripherality

The edge peripherality of an edge, denoted by

eperi({u, v}), is the number of vertices x such that

ng(x, u) > ng(u, x) and ng(x,v) > ng(v, x). In other
words, the vertices x counted are the ones for which more
vertices are closer to x than to u and more vertices are
closer to x than to v. The edge peripherality of a graph is

defined as eperi(G) = > ({u,v}).
{u,v}€E

Edge Sum Peripherality

The edge sum peripherality of an edge is defined as

espr({u,v})= >°  (ng(x, u) + n¢(x,v)). The edge
xeV—{u,v}

sum peripherality of a graph is defined as

espr(G) = > espr({u, v}).

{u,v}€E

The maximum possible value of espr(G) over n-vertex
graphs G was previously known to lie in the interval

[%sn4 — O(n%), n*]. We improve these bounds to The maximum possible value of eperi(G) over n-vertex
>n* — O(n®), :n*]. The construction that achieves the graphs G was previously known to lie in the interval
improved lower bound is shown below. We also determine :n°, 2n%]. We improve these bounds to

the leading terms of the maximums over n-vertex graphs of §n3(1 —o(1)), %n3]. The construction that achieves the

diameter 2 and n-vertex bipartite graphs of diameter at

improved lower bound is shown below. Here, K, denotes a
most 3, namely %n“ and %n”', respectively.

complete subgraph with r vertices.
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Increasing the number of vertices in each complete ) K

subgraph together, espr(G) achieves 2n* — O(n?). [soc] K50

As s increases, eperi(G) achieves §n3(1 —o(1)).
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