LSD1 Patients: No Known Cure or Treatment

Fig. 1: Patients with LSD1 mutations. (Chong et al., Genetics in Medicine, 2015)

Symptoms: Developmental delay, craniofacial defects, intellectual disability, and repetitive behavior that worsens with age

Current Paradigm
- Mice: Assessing Phenotypes in Mice

Background: Epigenetic Reprogramming in Model Organisms

Worms (C. elegans)
Epigenetic reprogramming enables the appropriate inheritance of histone methylation. This ensures germine genes are no longer active in the developing organism. In C. elegans, a microscopic worm, this reprogramming is mediated by two enzymes: H3K4me2 demethylase SPR-5 and H3K9 methyltransferase MET-2.

Mice
In mammals, epigenetic reprogramming is mediated by several enzymes, including LSD1, an H3K4me1/2 demethylase, during fertilization.

Methods & Results

1. **Assessing Behavior in Worms**
 - Do C. elegans strains lacking SPR-5 and/or MET-2 enzymes have behavioral defects?
 - Single-mutant (spr-5 or met-2) chemotaxis (ability to sense food) was measured and compared to that of wild type (N2) and double-mutant (spr-5;met-2).
 - The lower the chemotactic index, the greater the behavioral defect.
 - Double-mutants (DM) possess a severe behavioral defect.

2. **Rescuing the Behavioral Defect**
 - Is the behavioral defect in the double-mutants caused by a developmental or functional defect in their nervous system?
 - Lack of a developmental defect in DM nervous system allows behavior to be rescued by turning off germline genes.

3. **Determining Genes Causing Defect**
 - What are the genes responsible for the behavioral defect in the double-mutant?
 - The lack of a severe chemotaxis defect in single-mutants suggests that the genes that are both uniquely expressed in double-mutants and LSL-1 targets must be causing the chemotaxis defect.

4. **Assessing Phenotypes in Mice**
 - Do mice with maternally hypomorphic LSD1 suffer from similar phenotypes to those exhibited by human patients?
 - Mice with maternally hypomorphic LSD1 have craniofacial defects and developmental delay.

How this Research Challenges the Current Paradigm

This research suggests:
1) Some disease phenotypes may be an ongoing functional defect due to the ectopic expression of a subset of germline genes in the nervous system.
2) A defect in maternal epigenetic reprogramming contributes to disease phenotypes in the affected progeny.

Background:
- Epigenetic reprogramming is a mechanism that ensures the appropriate inheritance of histone methylation. In C. elegans, a microscopic worm, this reprogramming is mediated by two enzymes: H3K4me2 demethylase SPR-5 and H3K9 methyltransferase MET-2. In mammals, epigenetic reprogramming is mediated by several enzymes, including LSD1, an H3K4me1/2 demethylase, during fertilization.

Methods & Results:

1. **Assessing Behavior in Worms**
 - Single-mutant (spr-5 or met-2) chemotaxis (ability to sense food) was measured and compared to that of wild type (N2) and double-mutant (spr-5;met-2).
 - The lower the chemotactic index, the greater the behavioral defect.
 - Double-mutants (DM) possess a severe behavioral defect.

2. **Rescuing the Behavioral Defect**
 - Is the behavioral defect in the double-mutants caused by a developmental or functional defect in their nervous system?
 - Lack of a developmental defect in DM nervous system allows behavior to be rescued by turning off germline genes.

3. **Determining Genes Causing Defect**
 - What are the genes responsible for the behavioral defect in the double-mutant?
 - The lack of a severe chemotaxis defect in single-mutants suggests that the genes that are both uniquely expressed in double-mutants and LSL-1 targets must be causing the chemotaxis defect.

4. **Assessing Phenotypes in Mice**
 - Do mice with maternally hypomorphic LSD1 suffer from similar phenotypes to those exhibited by human patients?
 - Mice with maternally hypomorphic LSD1 have craniofacial defects and developmental delay.