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Automatic Discovery of V

Circuits

Q: How are intermediate computations conducted in vision

Previous Work: Manually

Constructed Circuits that

Compose Concepts

(Figure from Olah et. al 2020)
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Conmy et al. 2023 proposed ACDC for
circuit detection in language models

How do we automatically detect

Q: How do you train models with
known intermediate features?

tabby-joystick

Probability Mass Spreads Across

ctor at the

g

® positive (excitation )
® negative (i

A car detector

earlier units.

circuits in vision models?
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A: The CatFis
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is assembled from

Ablations on Circuits Allow for
Targeted, Causal Interventions

e Circuits allow for removal of entire
paths of influence
e We introduce two variants:

o Edge Pruning: corrupting all
connections between the first
and second layers of the circuit

o Circuit Pruning: removing all

neurons in a circuit

Building Circuits from
Connectivity Graphs

1. Select initial neurons layer-by-layer,

maximizing the sum of their attribution
scores to adjacent layers

2. Refine the neurons, maximizing the

circuit

tabby-pajama

sum of attribution scores within the

Circuits Implement Visual Feature Hierarchy

Subclass-level
intervention

( tabby +

3¢

pajama

[ pajama

tabby +
joystick

[ joystick

pajama +

Dataset!

Q: Are circuits actually used for

model predictions?
A: Yes! But how do we know?

We can “prune” circuits,
blocking information flow

to later layers

circuits have selective
effects on only relevant

prediction decisions

Subclasses

shoppingcart-joystick =

Pre-Ablation Logits
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TLDR

automatic visual
circuit extraction
neuron relevancy +
downstream effect =
functional
connectivity

causal interventions on
circuits — predictable
changes to model
behaviour
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Q: What does a model “see”
after circuit ablation?

A: Well, it certainly doesn’t

hotpot =
shoppingcart =
petridish =
pajama-
loafer -
joystick -
guillotine =

Q: What are the

limitations?

Only one allowed
circuit topology
—dense circuits with a
set number of neurons
per layer

Requires a well-defined
input image
distribution to perform
discovery

see the relevant subclass

Inception-CatFish assigns
approximately equal
probability to all classes
containing the
complement of the
ablated subclass

Q: Any next steps?

e Generalize CLA to
arbitrary circuit
structures
(sparsification)
Unsupervised
“dissection” into
several circuits
Text Based
Detection/Automatic
Circuit Description

Redefining Functional
Connectivity: Cross-Layer
Attribution (CLA)

1. Select circuit by specifying an

input distribution of images
2. Compute attribution matrix
from input distribution

Cross-Layer Attribution Matrix:

models?

attr[m n| < |a; m| -

Attrlbutlon /

Score Activation

Gradient (effect size)
(relevance)

Circuit Pruning Protects CLIP from
Adversarial Textual Attacks

Benchmarking Textual Defense: the Traffic .

Ligh

Traffic Light (images)

Label: Green |

Label: Red

CLIP Encoder

Image
Circuit

Textual Defense with

Circuit Pruning

e Layer Choice Matters:
Multimodal Composition
is Localized
Model Edits needed for
Defense are Minimal

CLIP improves from 3%
to 87% accuracy on
adversarial images, after
pruning only 6% of the
edges in layer 3

Q: What Could this
be used for IRL?

Locate and Remove
Circuits corresponding
to Unwanted
Behaviors
Understand visual
feature hierarchy of
large models
End-to-End model
dissection

Traffic | i

Using CLIP to label
traffic lights based
on their color

(red/ )
Multimodal
Neurons in CLIP
detect both
images and text

t Dataset

Adversarial Images

Q: Can CLA
Disentangle these
Capabilities?

e Two proposed subcircuits: an image
detector that detects traffic lights, and
a seperate text detector

We find the text detector using CLA,
and then use circuit pruning to
remove it
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images are my own
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