

Previous Work: Manually Constructed Circuits that Compose Concepts

(Figure from Olah et. al 2020)

Conmy et al. 2023 proposed ACDC for circuit detection in language models

How do we automatically detect circuits in vision models?

Automatic Discovery of Visual Circuits

Q: How are intermediate computations conducted in vision models?

Ablations on Circuits Allow for **Targeted, Causal Interventions**

- Circuits allow for removal of entire paths of influence
- We introduce two variants:
 - Edge Pruning: corrupting all connections between the first and second layers of the circuit
 - Circuit Pruning: removing all neurons in a circuit

Building Circuits from Connectivity Graphs

- Select initial neurons layer-by-layer, 1. maximizing the sum of their attribution scores to adjacent layers
- 2. **Refine** the neurons, maximizing the sum of attribution scores within the circuit

Redefining Functional Cross-Layer Attribution Matrix: Connectivity: Cross-Layer Attribution (CLA)

- 1. Select circuit by specifying an input distribution of images
- 2. Compute **attribution matrix** from input distribution

Circuits Implement Visual Feature Hierarchy

Q: How do you train models with

Circuit Pruning Protects CLIP from Adversarial Textual Attacks

ablated subclass

complement of the

Fraction of Edges Pruned

TLDR

- 1. automatic visual circuit extraction
- 2. neuron relevancy + downstream effect = functional connectivity
- causal interventions on 3. circuits \rightarrow **predictable** changes to model behaviour

Q: What are the limitations?

- Only one allowed circuit topology -dense circuits with a set number of neurons per layer • Requires a well-defined
- input image distribution to perform discovery

Q: Any next steps?

- Generalize CLA to arbitrary circuit structures (sparsification)
- Unsupervised "dissection" into several circuits
- Text Based **Detection**/Automatic **Circuit Description**

Q: What Could this be used for IRL?

- Locate and Remove Circuits corresponding to **Unwanted Behaviors**
- Understand visual feature hierarchy of
- large models
- End-to-End model dissection

References

Unless, otherwise noted, images are my own

[1] Olah, C., Cammarata, N., Schubert, L., Goh, G., Petrov, M., & Carter, S. (2020). Zoom In: An Introduction to Circuits. [2] Conmy, A., Mavor-Parker, A. N., Lynch, A., Heimersheim, S., & Garriga-Alonso, A. (2023). Towards Automated Circuit Discovery for Mechanistic Interpretability

[3] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2014). Going Deeper with Convolutions

[4] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., & Fei-Fei, L. (2014). ImageNet Large Scale Visual Recognition Challenge [5] Goh, G., Cammarata, N., Voss, C., Carter, S., Petrov, M., Schubert, L., Radford, A., & Olah, C. (2021). Multimodal Neurons in Artificial Neural Networks