We can “prune” circuits, but how do we automatically detect circuits in vision models?

A: Yes! But how do we know?

Circuits Implement Visual Feature Hierarchy

Q: How do you train models with known intermediate features?

A: We can “prune” circuits, blocking information flow to later layers. We introduce two variants:

- **Edge Pruning:** removing all connections between the first and second layers of the circuit.
- **Circuit Pruning:** removing all neurons in a circuit.

Building Circuits from Connectivity Graphs

1. Select initial neurons layer-by-layer, maximizing the sum of their attribution scores to adjacent layers.
2. Refine the neurons, maximizing the sum of attribution scores within the circuit.

Ablations on Circuits Allow for Targeted, Causal Interventions

- Circuits allow for removal of entire paths of influence.
- We introduce two variants:
 - **Edge Pruning:** disrupting all connections between the first and second layers of the circuit.
 - **Circuit Pruning:** removing all neurons in a circuit.

Circuit Pruning Protects CLIP from Adversarial Textual Attacks

Benchmarking Textual Defense: the Traffic Light Dataset

- Using CLIP to label traffic lights based on their color.
- **Multimodal Neurons in CLIP detect both images and text.**
- Can CLA Disentangle these Capabilities?

CLIP Encoder

Red/ Green Traffic Light Circuit

- **Adversarial Traffic Light:**
 - **Image Circuit:**
 - **Patching Probabilities**
 - Red Traffic Light: 0.974
 - Green Traffic Light: 0.026
 - **Original Probabilities**
 - Red Traffic Light: 0.036
 - Green Traffic Light: 0.964

Adversarial Image Circuit

Textual Defense with Circuit Pruning

- **Layer Choice Matters:** Multimodal Composition is Localized
- **Model Edits needed for Defense are Minimal**

CLIP improves from 3% to 87% accuracy on adversarial images, after pruning only 6% of the edges in layer 3.

References

