BrainSTEAM: A Practical Pipeline for Connectome-Based fMRI Analysis Toward Brain Disorder Classification

Applications

Applications of Brain Network Analysis:

diagnosis and treatment of brain disorders

• Develop brain-computer interfaces (BCIs)

• More effective, efficient, and earlier

• Cognitive enhancement

Current Challenges

Underuse of Temporal Data

Data Scarcity and Sparsity

Structural information loss

Overfitting and memorization

Graph Example

Framework

Results (State of the Art Comparison)

	Method	ABIDE				
Type		Accuracy	AUC	Precision	Recall	
	3D-CNN	73.3	75.8	-	-	
\mathbf{CNNs}	CNNG	72.46	79.0	-	74.35	
	CNN-EW	$66.88{\scriptstyle \pm 0.42}$	-	-	66.44 ± 0.19	
	DNN	$77.73_{\pm 4.26}$	-	$76.73_{\pm 4.11}$	77.16±3.72	
\mathbf{DNNs}	MISO-DNN	$77.73{\scriptstyle \pm 4.26}$	-	$76.73{\scriptstyle \pm 4.11}$	$77.16 {\scriptstyle \pm 3.72}$	
	ASD-SAENet	70.8	-	-	62.2	
SVM	SVM+MTFS	$76.7_{\pm 2.7}$	81 ± 0.31	$72.5_{\pm 3.2}$	$76.7_{\pm 2.7}$	
5 v 1VIS	$_{\rm SVM+RFE}$	76.63	74.27	78.63	82.74	
	Deep-GCN	73.71	74.58	66.51	75.2	
	ST-GCN	68.4	64.4	69.9	70.5	
Croph based	MAGE	75.86	83.14	71.53	79.24	
Graph-based	e-STAGIN	75.81 ± 1.70	81.12 ± 0.30	$78.03 {\scriptstyle \pm 2.34}$	79.06 ± 0.89	
	MAGIN	$78.12{\scriptstyle \pm 1.91}$	$85.72{\scriptstyle \pm 0.2}$	$78.37_{\pm 2.11}$	79.55 ± 1.62	
	IMAGIN	$79.25{\scriptstyle \pm 2.33}$	86.44 ± 0.24	81.03 ± 3.47	79.06 ± 0.89	
Mine	BrainSTEAM	87.5 ± 0.99	89.23 ± 0.88	82.24 + 2.48	$96.11_{\pm 2.47}$	

	Type		НСР				
		Metnod	Accuracy	AUC	Precision	Recall	
		M2D-CNN	83.20 ± 2.29	-	83.63 ± 1.87	_	
-	\mathbf{CNNs}	3D-CNN	82.34 ± 1.27	-	$82.68{\scriptstyle \pm 1.39}$	-	
		3D-SepConv	$80.44{\scriptstyle \pm 1.16}$	-	$80.88{\scriptstyle \pm 1.24}$	-	
	\mathbf{LTSMs}	LTSM	81.7	-	-	-	
		GC-LSTM	81.50	-	-	-	
	\mathbf{GCNs}	GCN	$83.98{\scriptstyle \pm 3.2}$	-	$84.59{\scriptstyle \pm 3.1}$	87.78 ± 6.4	
		ST-GCN	83.7	-	-	-	
	GINs	GIN-InfoMax	84.61 ± 2.9	-	$86.19_{\pm 3.3}$	$86.81_{\pm 4.9}$	
		STAGIN-SERO	88.20 ± 1.33	92.96 ± 1.87	-	-	
	Multivariate	PLS	79.9	88.125	-	-	
		DECENNT	86.00	93.6	87.2	88.6	
	Mine	BrainSTEAM	$91.41{\scriptstyle \pm 0.02}$	$93.67{\scriptstyle\pm0.01}$	100 ± 0.00	78.78 ± 0.04	

BrainSTEAM outperformed state-of-the-art models:

- 8.2% over next best model (IMAGIN) for ABIDE
- 3.21% over next best model (STAGIN-SERO) for HCP
- BrainSTEAM performed particularly well on the more heterogenous ABIDE dataset

Conclusion

• BrainSTEAM is the **first framework** to integrate a

Future Work

- Integrating an explainability component to identify key biomarkers
- Develop more accessible devices to analyze and stimulate brain connection activities.

temporal chunking technique with mixup, EdgeConv, and Autoencoder BrainSTEAM outperforms state of the arts

- BrainSTEAM effectively reduces overfitting and temporal feature loss as shown in interpretative analysis
- BrainSTEAM demonstrates flexibility and versatility by achieving superior performance on two different datasets

- Simpson, S.L., et al.: Analyzing complex functional brain networks: fusing statistics and network science to understand the brain. Stat. Surv. 7, 1 (2013)
 Essen, D.C.V., et al.: The wu-minn human connectome project: An overview. NeuroImage (2013)
- Li, A.: Brainmixup: Data augmentation for gnn-based functional brain network analysis. IEEE Big Data (2022)
- Wang, Y., et al.: Dynamic graph cnn for learning on point clouds. ACM Trans. Graph. (2018)

All images were created by the student unless otherwise stated