BrainSTEAM: A Practical Pipeline for
Connectome-Based fMRI Analysis Toward
Brain Disorder Classification

Applications Current Challenges Graph Example

Applications of Brain Network Analysis: Underuse of Temporal Data

* More effective, efficient, and earlier
diagnosis and treatment of brain disorders

* Cognitive enhancement
* Develop brain-computer interfaces (BCls)

Overfitting and memorization
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BrainSTEAM outperformed
state-of-the-art models:

ABIDE HCP

AUC

Method Method

AUC

3D-CNN 73.3 75.8
CNNG 72.46 79.0
CNN-EW  66.88+0.42 -

DNN 77.73+4.26 76.73+4.11 77.16+3.72
MISO-DNN 77.73+4.26 - 76.7344.11 77.16+3.72
ASD-SAENet 70.8 - - 62.2

Accuracy Precision  Recall

Precision

83.63+1.87
82.68+1.39
80.88+1.24

Accuracy

83.20+2.29
82.34+1.27
80.44+1.16

81.7
81.50

e 8.2% over next best model
(IMAGIN) for ABIDE

3.21% over next best
model (STAGIN-SERO) for

M2D-CNN
3D-CNN
3D-SepConv

LTSM
GC-LSTM

74.35
66.44+0.19

DNNs LTSMs

SVM-+-MTFS 76.7+2.7

SVMs SVM+RFE  76.63

81+0.31
74.27

72.5+3.2
78.63

76.7+2.7
82.74

Graph-based

Deep-GCN 73.71

ST-GCN 68.4

MAGE 75.86
e-STAGIN 75.81+1.70

74.58
64.4
83.14
81.12+0.30

66.51
69.9
71.53
78.03+2.34

75.2
70.5
79.24
79.06+0.89

GCN

GCNs ST-GCN

83.98+3.2
83.7

84.59+3.1 87.78+6.4

GIN-InfoMax
STAGIN-SERO 88.20+1.33 92.96 +1.87 - -

GINs

84.61+2.0

86.19+3.3 86.81+4.0

PLS

79.9

88.125

HCP

BrainSTEAM performed
particularly well on the

more heterogenous ABIDE
dataset

MAGIN 78124191 85.7240.2 T8.37+2.11 79.55+1.62 Multivariate

IMAGIN  79.25+2.33 86.44+0.24 81.03+3.47 79.06+0.89

Mine BrainSTEAM 87.5+0.99 89.2340.88 82.24+2.48 96.11+2.47

Conclusion

 BrainSTEAM is the first framework to integrate a
temporal chunking technique with mixup,

EdgeConyv, and Autoencoder BrainSTEAM
outperforms state of the arts

DECENNT 86.00 93.6 87.2 88.6
BrainSTEAM 91.41+0.02 93.67+0.01 100+0.00 78.78+0.04

* Integrating an explainability component to identify key
biomarkers

* Develop more accessible devices to analyze and stimulate
brain connection activities.
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Mine

BrainSTEAM effectively reduces overfitting
and temporal feature loss as shown in
interpretative analysis

BrainSTEAM demonstrates flexibility and
versatility by achieving superior performance
on two different datasets
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