## Binary Cellular Analysis: Understanding the Link Between Aging and Mortality Risk

### Background

Our chance of death *doubles* with every eight years we age during adult life

- Age-related diseases account for more than 2/3 of all deaths worldwide
- Aging processes at the cellular level is a complex web of interconnected processes, but how it leads to exponentially increasing disease risks is unclear



<sup>\*</sup>All images and graphics created by author unless stated otherwise

How do we link aging at the cellular level with observable mortality rates?

### Binary Cellular Analysis

**Binary Cellular Analysis** considers the aggregate consequences of large numbers of **discrete** cellular events.



### Two-Phase Model

(1) Linking cellular aging to loss of function at cell population level



#### (2) Forecasting Chance of Mortality

Ex. Infection



## How do demographic factors like **gender, health conditions, or vaccination status** affect mortality risk?



### A Cellular Explanation of Infant and Adult Mortality



- Exponentially increasing adult mortality can be traced to exponentially declining mitotic fraction and frequency of damage repair
- Infant and Adult mortality can be traced back to the control of cell division
  - Supported by antagonistic pleiotropy theory of William and Hamilton and the disposable soma theory of Kirkwood



- Sex chromosomes may affect lifespan through cell functionality time  $(F_p)$ . Females in most species may have higher  $F_p$  due to robust X-chromosome mechanisms.
- Suggests **health conditions** like diabetes significantly reduce cell functionality time (*F<sub>p</sub>*), increasing mortality risk across various diseases, including COVID-19.



- Explains how each **vaccination/booster** reduces the risk of COVID-19 death by roughly 33% permanently
- Suggests specific, calculable increases in lymphocyte specificity linked to vaccination effectiveness

### Project Significance and Application

# These findings provide the *first mechanistic explanation* for the link between aging and mortality rates of age-related diseases.

- 1) Explains **demographic trends/relationships** between infant and adult mortality, and the impact of factors like gender and diabetes on mortality risk.
- 2) Identifies important underlying biological parameters to inform **anti-aging treatments/pharmaceutical** development
- 3) Informs vaccine design through a systematic approach to evaluating immune response based on reducing lethality
- 4) Informs **public health policy** through optimizing distribution and scheduling of treatments (e.g. vaccinations) across age groups

#### **References:**

Counting Cells by Age Tells Us About How, and Why, and When, We Grow, and Become Old and III Luca Citi, Jessica Su, Luke Huang, James S Michaelson medRxiv 2023.01.05.23284244; doi: <u>https://doi.org/10.1101/2023.01.05.23284244</u>