
Alleviating the Energy Crisis: A Novel Multi-Task Machine 
Learning Algorithm for Designing Efficient Nanocatalysts 

to Reduce Industrial Energy Impact

Fig 1. “Electrification Future Study: Scenarios of 
Electric Technology Adoption and Power 
Consumption in the United States.” Energy.gov.
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METHODOLOGYTHE ENERGY CRISIS

I designed a machine learning algorithm which satisfies 
two capabilities: to design new, optimized catalysts based on 
preselected characteristics; and, to perform real-time analysis 
of X-ray absorption spectroscopy that is hundreds of times 
faster than traditional methods. The Multi-task Algorithm for 
Variational auto-ENcoding (MAVEN) uses a novel 
mathematical framework that incorporates both 
physics-informed and statistics-informed constraints. 

Fig. 6. A correlation plot between dimensions of the MAVEN latent space and the predicted 
descriptors sharing the highest mutual information with them. In purple is theoretical data not 
used in training, and in red and green are experimental data points in helium and hydrogen 
atmosphere, respectively. The temperature of each sample is denoted by the size of the point. 

Fig. 4. a) 2d KDE plot showing correlation between the latent space and the true values of 
interatomic distance. Interpolation across latent space dimension 6 and their predicted values are 
overlaid. b) Generated XANES spectra from corresponding interpolated values shown in a). 

RESULTS

Fig. 5. a) The evolution of palladium hydride over time, where the atmosphere is helium in the first 60 
seconds and is modulated to hydrogen in the last 60 seconds. b) A 1d KDE plot showing the 
distribution of predicted first shell interatomic distances between hydrogen and helium atmospheres.

Fig 2. “Weekly Pricing Pulse: Commodities down as Energy 
Crisis Recedes.” IHS Markit, 23 Feb. 2023.
 

Fig 3. Overview of MAVEN methodology.
 

There is a significant—and 
rising—gap between sources of 
energy and energy 
consumption, which has led in 
recent years to the largest 
energy crisis since the 1980s. 
Because it is hard to change 
household energy consumption, 
I targeted industrial use. This 
allows sustainable energy 
sources to catch up to demand 
and create a smoother 
transition away from fossil fuels.

Currently, many 
catalysts used in 
production are outdated 
and costly. I demonstrate 
a method which aids in 
the design of optimal 
catalysts. In addition, I 
illustrate high-speed 
analysis of catalysts for 
efficiency in design.

1. Explainability
MAVEN demonstrates interpretability because scientists can 
understand the relationships between spectra and properties 
using the latent space as a proxy (as seen in fig. 6). It is well 
established that a major problem with deep learning is 
explainability, or it is not possible to manage. 
2. Interpolation for Materials Discovery
Interpolations along known nanocatalyst descriptors give 
insight when inverting the effects of properties on spectra and 
materials. While previous methodologies were able to decode 
structure from spectra and simulations were able to construct 
spectra from structural parameters, my algorithm is the first 
to be able to reverse-engineer materials in a self-consistent 
manner (as demonstrated in fig. 4). I can pinpoint the material 
at previously unknown points in the latent space with 
pre-selected nanocatalyst properties so that I can find 
optimized solutions for manufacturing.
3. Real-time identification of nanocatalyst properties
I demonstrate that MAVEN provides faster and more accurate 
identification of crucial properties for designing optimal 
nanocatalysts than state-of-the-art techniques for materials 
analysis. In previous methodologies, there was an 
unsatisfactory degree of accuracy in experimental data due to 
a lack of denoising capability, which would inhibit this from 
being used in real-world industrial situations. MAVEN allows 
for the understanding of physicochemical properties in 
complex, fast reactions through incomplete, noisy, 
time-modulated data, demonstrated in fig. 5 and fig. 6.


