Leveraging Mitochondrial DNA Mutations for Macrophage Lineage Tracing in Primary Human Tissues

BACKGROUND

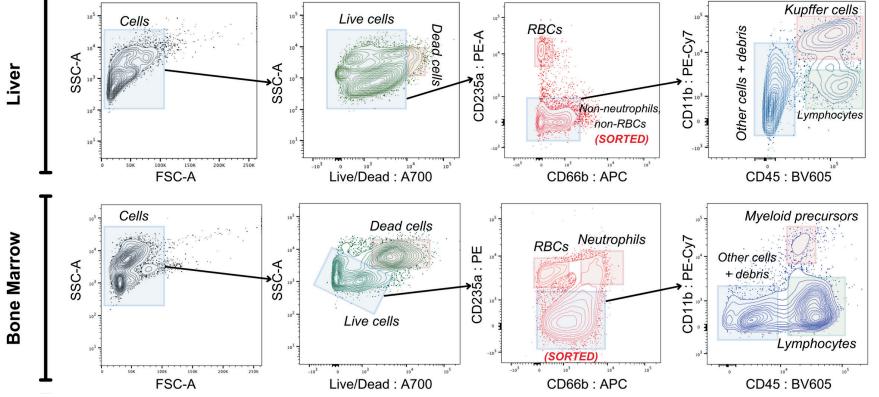
Characterization of macrophage development is essential to understand their role in disease settings. Macrophages, which play a role as the primary defense against pathogens and tumor cells, have specific functions based on the tissues they reside in. These are known as tissue-resident macrophages (TRMs), examples being microglia in the brain and **Kupffer cells** in the liver. Our current understanding suggests that multiple TRM populations originate during the early stages of embryonic hematopoiesis and self-replicate **independently** to maintain their populations A new study presents a possibility that certain TRM populations may undergo replenishment from hematopoietic stem cells (HSCs), especially in elderly populations. This study uses a genomics technique called the mitochondrial single-cell Assay for Transposase Accessible Chromatin sequencing (mtscATAC-seq), a high-throughput method combining mitochondrial DNA analysis and chromatin accessibility profiling, to trace and identify macrophages derived from bone marrow stem cells in primary human tissues. Project Hypothesis: As humans age, TRM populations are replenished from HSCs in their bone marrow.

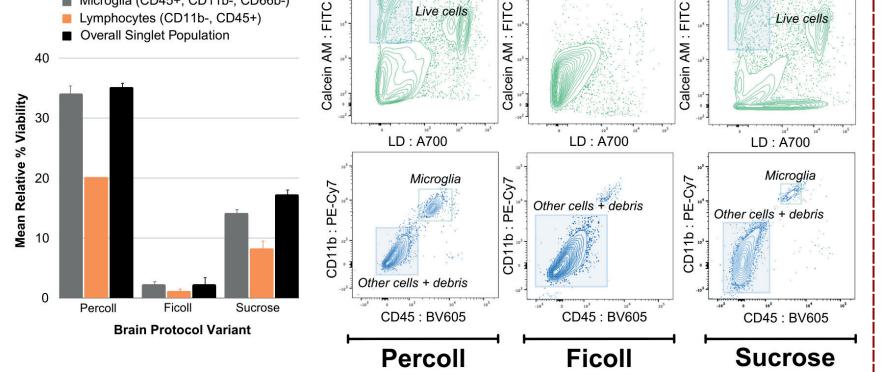
METHODS and WORKFLOW

Primary tissue samples were received from Donor Network West. Tissues were dissociated and filtered for optimal cell viability. Sample solutions were sorted through a process known as flow cytometry, which uses lasers to identify certain cell markers and sorts cells by droplet. For this study, I sorted for live cells, excluding neutrophils and red blood cells. The sorted samples underwent the mtscATAC-seq protocol which allowed for extraction and purification of mitochondrial DNA (mtDNA). DNA samples were sequenced and cell clusters were plotted to visually identify shared mutations across clusters.

RESULTS

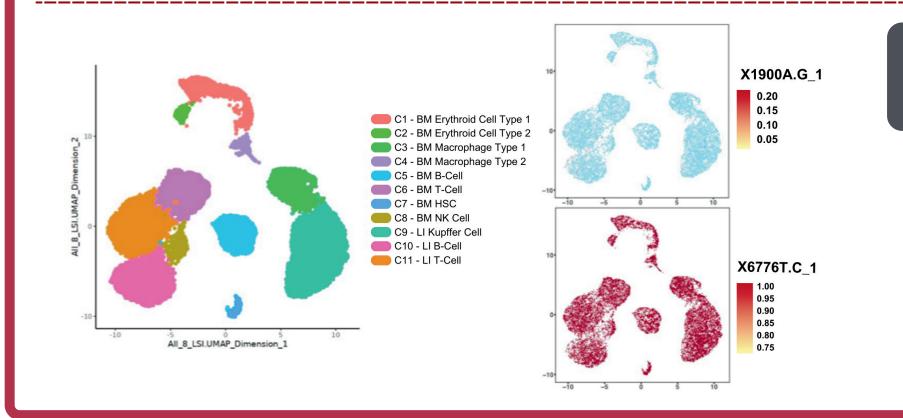
Figure 1: Mean Viabilities by Brain Cell Type From **Different Density Centrifugation Gradients**


Figure 2: Representative Flow Cytometry Data From **Human Liver And Bone Marrow**


Microglia (CD45+, CD11b-, CD66b

a

R



- After brain tissue was dissociated, the myelin fraction of the sample needed to be removed in order to prepare the sample for flow cytometry
- Conducted three identical brain digest preparations comparing Percoll, Ficoll, and Sucrose
- Percoll density gradient was most effective in removing myelin debris based on mean quantitative cell viabilities (Figure 1a) and visual population separation (**Figure 1b**)

The donor presented in this study is from Donor Network West, referred to as **'DN3.'** Donor DN3's liver and liquid bone marrow were dissociated and sorted using flow cytometry, confirming the presence of the following (Figure 2):

- **DN3 Liver**: 364,970 total viable cells
 - 159,203 Kupffer cells and 25,573 lymphocytes
- DN3 Bone Marrow: 327,788 total viable cells
 - 134,932 lymphocyte progenitors and 70,293 myeloid precursor cells

Figure 3: UMAP Clustering of DN3's Liver Samples Over Matching Bone Marrow Samples From mtscATAC Libraries

- DN3's liver and bone marrow (BM) samples showed uniform expression of mitochondrial DNA mutations across cell clusters
 - The top right panel of **Figure 3** displays all cell clusters lacking in expression of a particular mtDNA mutation, while the bottom right panel shows all cell clusters expressing another mtDNA mutation
 - This pan-expression indicates a germline mutation, suggesting ALL cell populations, including Kupffer cells, arose from embryonic hematopoiesis

CONCLUSIONS

FUTURE DIRECTIONS

This project presents a new narrative regarding the origins and replenishment dynamics of TRMs in adults.

- Liver and corresponding bone marrow findings illustrate uniform expression
 - Evidence suggests that the Kupffer cells in this subject were predominantly derived from embryonic hematopoiesis, aligning with traditional perspectives on Kupffer cell replenishment
 - However, more liver samples from patients of different ages, sexes, and other variables will be needed to confirm this analysis
- Using the effective methods from this study, macrophage lineage data from other tissues such as brain, lung, and spleen tissues have potential to shed light on how TRM replenishment plays a role in tissue-degenerative and agerelated disease

Compare the macrophage lineage in **healthy subjects versus those** with specific health conditions.

- **Understand** the relationship between **CHIP** and the development of Alzheimer's Disease.
- **Research** the potential for adult bone marrow-derived replenishment of TRMs in more primary tissues, such as the lung and spleen.
- **Expand** this study to include a broader, more diverse cohort of subjects, looking at ages, sexes, and health conditions.
- **Streamline** the overall tissue dissociation pipeline to allow for **higher** S quality genomics data and comparable results.

All images and figures in this poster are owned and created by Arnav Chakravarthy