
Concatenations of Incidence Matrices, Spanning
Trees in Planar Graphs: Two Related Problems

Introduction

Problem 1. What is the largest number of spanning trees τm you
can have in a planar graph with m edges?

Problem 2. Given a square bi-incidence matrix, what is its largest
possible determinant maxdetm?

• The problem of counting spanning trees is central to the
field of counting and sampling, and has applications to
telecommunications networks and geometry.

• The problem of finding the number of spanning trees in a planar
graph was first introduced by statistical physicists to model
Ferromagnetism.

• Ice-type models, the Potts model, and the Ising model are all
examples of physical ensemble models closely related to the
number of spanning trees in a planar graph.

Definitions
Graphs are abstract mathematical objects used to describe sets
of objects (as vertices) along with relationships between them (as
edges). Some examples include:

• A railway system between cities

• An electrical circuit network

• Irrigation canals and waterways

Definition. A graph G = (V,E) consists of a set of vertices V
along with a set of edges E between those vertices. We say that G
is planar if it can be drawn in a plane so that any two edges can
only intersect at a vertex of G.

Given a planar directed graph G, we can construct its directed
planar dual G∗ by placing the vertices of G∗ in the faces of some
planar embedding of G (including the outer face). For each edge e
in G, we obtain a new edge in G∗ by “rotating” the edge e by 90◦

counterclockwise.

Definition. A spanning tree on a graph G is a minimal set of
edges that connects all of the vertices of G.

We denote the total number of different spanning trees of a graph G
by τ(G) and define τm to be the largest possible number of spanning
trees in a planar graph with m edges.

Definition. Given a directed graph, its incidence matrix is a
matrix where each edge is represented by a row with ±1 in the
columns corresponding to endpoints of the edge.

We say a matrix is an incidence submatrix if it can be obtained
by removing some rows and columns from an incidence matrix.
We call a square matrix that can be obtained by concatenating,
or putting side-by-side, two incidence submatrices a bi-incidence
matrix, and define maxdetm to be the largest determinant of a
m×m bi-incidence matrix.

A Linear Algebraic Connection
The key to proving τm ≤ maxdetm lies in the following construction
using planar duality.

Theorem 1.

Theorem 2. For sufficiently large m ∈ N,

1.791m ≤ τm ≤ maxdetm ≤
(

3
√
7
)m

≃ 1.913m.

In particular, the third and fourth inequalities hold for all m ∈ N.

Conjecture 1. τm = maxdetm for all positive integers m.

A New Planarity Criterion

Definition. We define the excess of a graph G to be equal to
ε(G) = τ(G) − maxdet(G), where maxdet(G) denotes the largest
determinant of the concatenation of the incidence submatrix of G
with a incidence submatrix.

Theorem 3. Let G be a graph. Then

ε(G)

{
= 0, if G is planar,
≥ 18, otherwise.

In other words, G is planar if and only if ε(G) = 0.

Future Directions

Theorem 4. If G is a subdivision of K3,3 or K5 with m edges, then
maxdetG ≤ τm.

We prove Theorem 4 using a method called the edge-relocation
method, eliminating an infinite class of nonplanar graphs from
being counterexamples to the conjecture.
Some potential approaches to proving the conjecture include closing
the gap between the lower and upper bounds in Theorem 2 or
generalizing Theorem 4 to include all nonplanar graphs.
We hope that our work and methods inspire future research to
resolve this conjecture and gain deeper insight into this surprising
connection across fields.
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