
On the Smoothness and Regularity of the Chess Billiard Flow
and the Poincaré Problem

Introduction

• Internal waves are important to the study of oceanography and to
the theory of rotating fluids.

• They describe how an originally unmoving fluid can move and evolve
under perturbation by a periodic forcing function

• We study the behavior of a particular two-dimensional model for
these internal waves, called the Poincaré problem, which forms
patterns called billiard flows

• Billiard flows map points on a boundary of a given shape to another
point on that boundary, with some sort of reflection or bouncing
step (ex: in a game of pool)

The chess billiard map preserves the
slopes of the trajectories. Each
mapping b consists of traveling first on
a line of slope ρ (blue), and then
bouncing off the boundary at a slope
of −ρ (red).

The Chess Billiard Map and Rotation

We can describe the chess billiard map as a rotation of points along the
boundary; the mapping from x to b(x) below can be thought of as point
x being rotated counterclockwise to b(x).

We quantify the rotation using the rotation number r, or the average
rotation per mapping over time. For example, in the above figure, the
rotation number is r = 1

2.
"Rational" and "irrational" rotation correspond directly to the rationality
or irrationality of r. When r is rational, a period trajectory forms — the
same lines are traveled along again and again. However, in an irrational
rotation (i.e. r is irrational), a point can never be mapped to itself again,
so there is no periodic trajectory.

Here, the rational rotation (left) has
clear lines, while the near-irrational
(right) is almost fully shaded and
smooth. In my project, I show that in
the case of irrational rotation, the flow
becomes mathematically smooth.

The Wave Equation

I studied the wave equation known as the Poincaré problem, which
models the chess billiard maps:
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u|t=0 = ∂tu|t=0 = 0, u|∂Ω = 0,
where Ω is a smooth 2D convex domain with boundary ∂Ω, f (x) is the
forcing function, and λ ∈ (0, 1) is the frequency of the periodic forcing
in cos (λt).
• u represents the chess billiard map and is the solution to the

Poincaré problem.
• u is the "stream function" and maps the fluid’s velocity in two

dimensions.
• It is what I show is highly differentiable (smooth).

Rotation in the Square

The chess billiard mapping can be more formally described as traveling

on lines of slope ρ =
√
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and −ρ = −

√
1 − λ2

λ
, for a 0 < λ < 1.

This represents one iteration of the mapping.

Definition. The rotation number of a chess billiard map with
parameter λ and starting point p over n iterations is

r(p, λ) = lim
n→∞

dn

n
where dn is total fractional distance traveled around the boundary.

Proposition. The rotation number r(λ) of the chess billiard map
in a square is λ√

1 − λ2 + λ
.

We use the following irrational rotation condition on r(λ).

Definition. Let r be an irrational number. We call r
β−Diophantine if for all rationals p/q, with q ∈ Z+, there exist
some constants β and C > 0, for which r satisfies the inequality∣∣∣∣r − p

q

∣∣∣∣ ≥ C

q2+β
.

• Loosely, r being Diophantine means that it is far from all rationals.

Statement of Main Result

Our main result is: Given a Diophantine-irrational rotation of the chess
billiard map in the square, the solution to the wave equation is smooth,
or infinitely differentiable.
More formally, we have the following theorem, where Cq represents q-
times differentiable.

Theorem. Given a forcing function f (x) ∈ Cs[0, 1] × [0, 1] and
a β-Diophantine rotation number r(λ) for some β and C > 0, the
solution u(t) of the Poincaré problem in the square is in Cs−1−β.

Proof. A rough roadmap of the proof is
• Write u as the sum of exponentials (specifically, as its Fourier

decomposition)
• Bound these sums (using the Diophantine irrational condition)
• Relate the bounds to smoothness (specifically, using Sobolev spaces;

bounded Fourier coefficients can translate to higher differentiability)

Corrollary. If f is smooth (i.e. f ∈ C∞), then u is also smooth.

Future Directions

The natural extension of these results is to examine the behavior of u
and irrational rotation in shapes beyond the square.

Conjecture. For all convex shapes, u is smooth for sufficiently
irrational rotation.

• Studying the wave behavior is more difficult in shapes where
rotation numbers cannot be explicitly calculated.

• I ran numerical simulations to
estimate r(λ) at different λ for
"perturbed" squares, such as a
trapezoid, tilted square, and
rounded square.

I’d like to perform more simulations to determine approximate r(λ) and
analyze rapid decay of the Fourier coefficients beyond the square.

Sally Zhu
Dyatlov et al. 2021

Sally Zhu
All uncited images and figures created by author.




