Recurrent Repeat Contractions (rRCs) & Micro-Changing Short Tandem Repeats (mcSTRs): Investigating Novel Polymorphic Variants in 15 Human Cancers

1. REPLICATION ERRORS

2. DETECTING DISEASE STATE TRs

Fig. 8. Breakdown of mcSTRs by cancer subtype. HCC=Hepatocellular carcinoma.

182 final mcSTRs identified across 10 cancer types; 176/182 subtype specific (Fig. 8), allowing for cancer tissue-of-origin detection by mcSTR

Extrachromosomal Circular DNA 1270⁵⁵

mcSTRs are distinct from other repeat types (Table 1); may form from alternative cancer pathways/mechanisms; precedent to be found in eccDNA

Microsatellites

rRCs: ELIMINATING NON-rRC REPEAT SIGNALS VIA LRDN

• LRDN eliminated >80% of candidate rRCs as <u>false positives</u> (689 \rightarrow 120; Fig 3A)

• EHdn + TROPIC³¹ + LRDN \rightarrow 120 rRCs across 10 cancer types (Fig. 3B)

false positive rRCs ChRCC. Wilcoxon-rank sum test/False Discovery Rate³²⁻³³. *FDRg= 0.00107 **g=0.0000227

rRCs: VISUALIZATION IN PROSTATE ADENOCARCINOMA

• Electrophoresis visualizations: lower tumor weight vs normal, indicating rRCs (38%; Fig. 5)

Fig. 5. Sample visualization of rRCs in Prostate Adenocarcinoma. Electrophoresis³⁴⁻³⁵ of 4 patients at chr10:22006254-22007372. N: Non-Cancer Sample, T: Tumor Sample. Each pairing shows lower tumor bands, indicating presence of an rRC.

medulloblastoma. GBM =

Correction (q<0.05)

Glioblastoma. Wilcoxon Rank Sum Test (p<0.05), False Discovery Rate

• rRCs experimentally observed in Prostate Adenocarcinoma.

rRCs: PRDM16 INTRONIC rRC in HCC CASE STUDY

PRDM16 intronic rRC may play functional roles in transcript usage and survival rate

Fig. 6. PRDM16 rRC qualities. A) % of rRC expressed HCC Patients. B) PRDM16 isoform expression in HCC samples as a function of PRDM16 rRC detection³⁶⁻³⁷. Wald test/FDR correction³⁰. C) Kaplan-Meier plots stratified by PRDM16 expression levels in HCC (lowest quartile by Z score; high quartile, RNA-seq quantitation; log-rank p=2.2 x10⁻⁷ ^{).38-39}*p = 0.0048

- PRDM16 rRC located in 46% of all HCC samples (Wald test & FDR; Fig. 6A; p=0.0048)
- Associated with a significant decrease in transcript isoform usage (Fig. 6B)
- High PRDM16 expression correlates to **poor HCC survival** (Fig. 6C; p=2.2x10⁻⁷)

rRCs/mcSTRs: GENOMIC QUALITIES TO OTHER REPEATS

mcSTRs: LIVER HEPATOCELLULAR CARCINOMA (HCC) CASE STUDY

Full contractions observed in eight mcSTRs (Table 2), distinct **biomarkers in HCC**

Table 2. HCC mcSTRs contract in tumors. mcSTRs named proprietarily									
Locus	Gene	Repeat	Tumor Full Contraction	Tumor Any Contraction	Normal Any Contraction				
mcSTR1	MCG1 (intron)	(CGC)*	52%	60%	2%				
mcSTR2	MCG2 (intron)	(GCG)*	60%	88%	29%				
mcSTR3	MCG3 (intron)	(CGG)*	51%	56%	14%				
mcSTR4	MCG4 (intron)	(CGCGCC)*	56%	65%	39%				
mcSTR5	MCG6 (intron)	(GGC)*	41%	43%	8%				
mcSTR6	intergenic	(GCG)*	53%	82%	33%				
mcSTR7	intergenic	(GCC)*	26%	77%	59%				
mcSTR8	MCG8 (exon)	(GCN)*	9%	31%	3%				

200,000+⁵²⁻⁵⁴

One (partial)

149 (proximal/in)

Fig. 9. 8 mcSTR repeat genotypes for HCC diagnosis. 8 mcSTR genotypes effectively distinguish between tumor vs normal samples (Fig. 9)

mcSTRs EXPERIMENTALLY VALIDATED IN HCC TUMOR/PLASMA

Two primer sets: Control primers (always-bind) and Contraction-only primers⁵⁹⁻⁶⁰

Plasma No-Contraction Primers										
						5				

Fig. 7. rRC/mcSTR Genomic Features. A) rRC/mcSTR motif length distribution, B) rRC/mcSTR genic feature overlap, C) Telomeric distance rRC/mcSTRs, D) rRC/mcSTR distribution across MSS & MSI-high cancers. Chi-square test with Yates' correction⁴⁷⁻⁴⁸ *p=0.04, **p=0.03 E) rRCs/mcSTRs cCRE distance vs Simple Repeats Catalog⁴⁹⁻⁵¹.*p=0.072 **p=0.002 • Bimodal repeat distribution (Fig. 7A); various genic features (Fig. 7B) favors telomeres (Fig. 7C) • No microsatellite instability enrichment in samples +mcSTR/rRC (Fig. 7D)⁵²⁻⁵³; rRCs are closer to cCREs than expected; mcSTRs located closer than expected (Fig. 7E)

• mcSTRs and rRCs may play pathogenic roles in **cancer cell death & gene expression**⁵⁴⁻⁵⁶

CONCLUSIONS

Local Read Depth Normalization: new algorithm that removes false-positive rRCs II. ActiveSTRs Catalog: effective benchmark dataset for evaluating pathogenic mcSTRs III. rRCs/mcSTRs: NOVEL mutations spanning 15 cancers; functionally similar to other repeats **IV. Liver-HCC mcSTRs:** effective diagnostic panel; **experimentally identified in tumor/plasma** V. PRDM16 rRC: related to HCC expression/survival, clinically applicable VI. Global mcSTR Burden: associated to DNA repair gene pathways and cancer expression

Fig. 11. Comparing mcSTR1 No-contraction/contraction-only primers in HCC Plasma. mcSTR1 is identified in 4/7 plasma samples, indicating presence in cfDNA. LD=Ladder. NC=negative control. Gold boxes indicate mcSTR identified in the sample. • 0/20 HCC normal, 11/20 HCC tumor, 4/7 plasma HCC samples exhibit mcSTRs (Fig. 11) mcSTR1 experimentally observed in HCC cfDNA, indicating early cancer biomarker **FUTURE INVESTIGATIONS/APPLICATIONS**

cfDNA rRCs/mcSTRs are promising biomarkers in early, localized cancer detection(Fig. 12)⁶¹⁻⁶²

rRC/mcSTR-targeted therapies may allow for novel cancer medicines63-65 *All images/graphics/figures created by finalist

Fig. 12. Circular cell-free DNA can become DNA mutation targets for diagnosis. mcSTRs/rRCs identified via sequence detection in DNA