A Generalization of q-Calculus Using Formal Group Laws

Abstract

In a field of math called q-calculus, there is an operator called the q-derivative, which is analogous to the derivative from calculus. We generalized the q-derivative to an operator called the s-derivative by modifying a formula called the q-power rule. Several theorems in calculus and q-calculus generalize to s-calculus. Also, we defined the s-binomial coefficients (which generalize the q-binomial coefficients) and proved analogues of combinatorial identities for the s-binomial coefficients.

Background: What is q-calculus?

One of the most important ideas in calculus is the derivative, which measures the rate of change of a function. In another area of math called q-calculus, there is an operator called the q-derivative, which is similar to the derivative in many ways. The q-derivative of a function f at a point x is defined by

$$
\frac{f(q x)-f(x)}{q x-x}
$$

and as q gets closer and closer to 1 , the q-derivative approaches the usual derivative of f.

Example

The q-derivative of x^{n} is

$$
\frac{q^{n} x^{n}-x^{n}}{q x-x}=\left(\frac{q^{n}-1}{q-1}\right) x^{n-1} .
$$

This fact is called the q-power rule.
We use the symbol $[n]_{q}$ to denote $\left(q^{n}-1\right) /(q-1)$, and we call it the \boldsymbol{q}-analogue of \boldsymbol{n}. This is because the q-derivative of x^{n} is $[n]_{q} x^{n-1}$, while the usual derivative of x^{n} is $n x^{n-1}$. (A q-analogue is an object or result in q-calculus that is analogous to an object or result in calculus.)

Background: The q-binomial coefficients

In the field of q-calculus, many objects other than the derivative also have q-analogues, including binomial coefficients. Recall that the binomial coefficient $\binom{n}{k}$ is the number of ways to choose k objects from a collection of n different objects. A formula for $\binom{n}{k}$ is

$$
\binom{n}{k}=\frac{n(n-1)(n-2) \cdots(n-k+1)}{k(k-1)(k-2) \cdots 1} .
$$

To change this into a q-binomial coefficient, replace each factor with its q-analogue. So the q-binomial coefficient $\binom{n}{k}_{q}$ is

$$
\binom{n}{k}_{q}=\frac{[n]_{q} \cdot[n-1]_{q} \cdot[n-2]_{q} \cdots[n-k+1]_{q}}{[k]_{q} \cdot[k-1]_{q} \cdot[k-2]_{q} \cdots \cdot[1]_{q}}
$$

Binomial coefficients satisfy combinatorial identities like Pascal's identity, which states that

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
$$

and it turns out that q-binomial coefficients satisfy q-analogues of many of these identities. For example, here is the \boldsymbol{q}-Pascal identity:

$$
\binom{n}{k}_{q}=\binom{n-1}{k-1}_{q}+q^{k}\binom{n-1}{k}_{q} .
$$

The s-derivative

Since the q-derivative is linear and satisfies the q-power rule, the q-derivative of a polynomial

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

is

$$
a_{1}[1]_{q}+a_{2}[2]_{q} x+\cdots+a_{n}[n]_{q} x^{n-1}
$$

What would happen if we generalize the q-derivative by replacing every $[m]_{q}$ with some other value $s(m)$ that depends on m ? Specifically, let s be a sequence with zeroth term $s(0)=0$. Then, we define the s-derivative of $f(x)$ to be

$$
a_{1} s(1)+a_{2} s(2) x+\cdots+a_{n} s(n) x^{n-1} .
$$

The s-derivative of x^{n} is $s(n) x^{n-1}$, a fact called the s-power rule. We say that this is an s-analogue of the power rule.

The s-binomial coefficients

We can generalize the q-binomial coefficients in a similar way. We start with the definition of $\binom{n}{k}_{q}$, and replace every $[m]_{q}$ with $s(m)$, where s is a sequence. The s-binomial coefficient $\binom{n}{k}_{s}$ is defined to be

$$
\binom{n}{k}_{s}=\frac{s(n) s(n-1) s(n-2) \cdots s(n-k+1)}{s(k) s(k-1) s(k-2) \cdots s(1)} .
$$

We proved an analogue of Pascal's identity for the s-binomial coefficients:

$$
\binom{n}{k}_{s}=\binom{n-1}{k-1}_{s}+\frac{s(n)-s(k)}{s(n-k)}\binom{n-1}{k}_{s} .
$$

Notice that if $(s(n)-s(k)) / s(n-k)$ is an integer for all integers $n \geq k \geq 0$, then an induction proof shows that $\binom{n}{k}_{s}$ is always an integer. This condition on s turns out to imply the existence of s-analogues of several more combinatorial identities.

Definition

We call an integer sequence \boldsymbol{s} a generalized \boldsymbol{n}-series if it satisfies the following conditions:

11 $s(0)=0$,
[2 $s(n)$ is nonzero for any positive n,
乃 $s(n-k)$ divides $s(n)-s(k)$ for all integers $n \geq k \geq 0$.
The term "generalized n-series" comes from the fact that sequences called the \boldsymbol{n}-series of formal group laws are important examples of generalized n-series.

Other results

We showed that if s is a generalized n-series, then s-analogues of the following results exist:

- the product rule,
- the binomial theorem,
- Vandermonde's identity,
- Lucas's theorem,
- the Poincaré lemma for the algebraic de Rham complex,
- the Cartier isomorphism for the algebraic de Rham complex.
We also studied the asymptotic growth of integer generalized n-series.

