
A Generalization of q-Calculus
Using Formal Group Laws
Abstract

In a field of math called q-calculus, there is an operator called the
q-derivative, which is analogous to the derivative from calculus.
We generalized the q-derivative to an operator called the
s-derivative by modifying a formula called the q-power rule.
Several theorems in calculus and q-calculus generalize to
s-calculus. Also, we defined the s-binomial coefficients (which
generalize the q-binomial coefficients) and proved analogues of
combinatorial identities for the s-binomial coefficients.

Background: What is q-calculus?

One of the most important ideas in calculus is the derivative,
which measures the rate of change of a function. In another area
of math called q-calculus, there is an operator called the
q-derivative, which is similar to the derivative in many ways. The
q-derivative of a function f at a point x is defined by

f (qx) − f (x)
qx − x ,

and as q gets closer and closer to 1, the q-derivative approaches
the usual derivative of f .

Example
The q-derivative of xn is

qnxn − xn

qx − x =
(

qn − 1
q − 1

)
xn−1.

This fact is called the q-power rule.

We use the symbol [n]q to denote (qn − 1)/(q − 1), and we call it
the q-analogue of n. This is because the q-derivative of xn is
[n]qxn−1, while the usual derivative of xn is nxn−1. (A
q-analogue is an object or result in q-calculus that is analogous to
an object or result in calculus.)

Background: The q-binomial coefficients

In the field of q-calculus, many objects other than the derivative
also have q-analogues, including binomial coefficients. Recall that
the binomial coefficient

(n
k
)

is the number of ways to choose k
objects from a collection of n different objects. A formula for

(n
k
)

is (
n
k

)
= n(n − 1)(n − 2) · · · (n − k + 1)

k(k − 1)(k − 2) · · · 1 .

To change this into a q-binomial coefficient, replace each factor
with its q-analogue. So the q-binomial coefficient

(n
k
)
q is(

n
k

)
q

= [n]q · [n − 1]q · [n − 2]q · · · [n − k + 1]q
[k]q · [k − 1]q · [k − 2]q · · · · · [1]q

.

Binomial coefficients satisfy combinatorial identities like Pascal’s
identity, which states that(

n
k

)
=

(
n − 1
k − 1

)
+
(

n − 1
k

)
,

and it turns out that q-binomial coefficients satisfy q-analogues of
many of these identities. For example, here is the q-Pascal
identity: (

n
k

)
q

=
(

n − 1
k − 1

)
q

+ qk
(

n − 1
k

)
q
.

The s-derivative

Since the q-derivative is linear and satisfies the q-power rule, the
q-derivative of a polynomial

f (x) = a0 + a1x + a2x2 + · · · + anxn

is
a1[1]q + a2[2]qx + · · · + an[n]qxn−1.

What would happen if we generalize the q-derivative by replacing
every [m]q with some other value s(m) that depends on m?
Specifically, let s be a sequence with zeroth term s(0) = 0. Then,
we define the s-derivative of f (x) to be

a1s(1) + a2s(2)x + · · · + ans(n)xn−1.

The s-derivative of xn is s(n)xn−1, a fact called the s-power rule.
We say that this is an s-analogue of the power rule.

The s-binomial coefficients

We can generalize the q-binomial coefficients in a similar way. We
start with the definition of

(n
k
)
q, and replace every [m]q with

s(m), where s is a sequence. The s-binomial coefficient
(n
k
)
s is

defined to be(
n
k

)
s

= s(n)s(n − 1)s(n − 2) · · · s(n − k + 1)
s(k)s(k − 1)s(k − 2) · · · s(1) .

We proved an analogue of Pascal’s identity for the s-binomial
coefficients:(

n
k

)
s

=
(

n − 1
k − 1

)
s

+ s(n) − s(k)
s(n − k)

(
n − 1

k

)
s
.

Notice that if (s(n) − s(k))/s(n − k) is an integer for all integers
n ≥ k ≥ 0, then an induction proof shows that

(n
k
)
s is always an

integer. This condition on s turns out to imply the existence of
s-analogues of several more combinatorial identities.

Definition
We call an integer sequence s a generalized n-series if it
satisfies the following conditions:

1 s(0) = 0,
2 s(n) is nonzero for any positive n,
3 s(n − k) divides s(n) − s(k) for all integers n ≥ k ≥ 0.

The term “generalized n-series” comes from the fact that
sequences called the n-series of formal group laws are
important examples of generalized n-series.

Other results

We showed that if s is a generalized n-series, then s-analogues of
the following results exist:

the product rule,
the binomial theorem,
Vandermonde’s identity,
Lucas’s theorem,
the Poincaré lemma for the algebraic de Rham complex,
the Cartier isomorphism for the algebraic de Rham
complex.

We also studied the asymptotic growth of integer generalized
n-series.


