ScGAN: A Generative Adversarial Network to Predict Hypothetical Superconductors

The Search for Superconductors

- Superconductors are materials that **perfectly** conduct electricity once they are cooled below a **critical temperature** T_c
- Used in several important applications: Quantum Computers, Maglev trains, particle accelerators, etc.
- Because low temperatures are hard to
- maintain, High Temperature Superconductors (HTSs) are desired

Method: Generative Adversarial Network

- Generative Adversarial Network (GAN): machine learning architecture that generates things that resemble the training data. The main idea is to leverage this for superconductors.
- GAN trained on OQMD (general compounds) and transfer learned onto SuperCon (superconductors)
- Also transfer learned onto subsets of SuperCon: cuprates (Cu-based), pnictides (Fe-based), and anything else that remained to see if it could learn features of these different classes

However...

- Manual searches for HTSs are very inefficient (success rates of ≈3%)
 – essentially just guess and check
- Current computational methods only classify -> can only check databases of known compounds for superconductors, which restricts possibilities

Idea: create a computational model that *directly* outputs a list of new superconductors.

Data Analysis & Results

GAN Version	Novel %	Superconducting $\%$
Entirety of SuperCon	99.69%	70.42%
Cuprate	99.74%	71.95%
Pnictides	99.32%	67.89%
Others	98.89%	64.39%

Above: Novelty percentages and superconducting percentages for the candidate lists generated from the GANs. Below: distributions of formation energies of the predictions from the GANs (lie mostly to the left of 0).

A trained GAN generating a list of candidates.

Data encoding for a superconductor. The matrix is what's fed into the GAN.

Conclusion

Successes

- 1. Created the **first-ever GAN** to predict superconductors → **best method** of obtaining candidates for superconductivity in existence
- 2. **Exceeded** the benchmarks of the manual search:

	Manual Sea	rch		My GAN	
Success Rate	3%	×23	3.5 ↓	70.42%	
Max T _c	58 K	+7	5 K	133 K	

3. The GAN was also able to **learn the features** of the important classes of superconductors: cuprates, pnictides, and others

Applications

- Discover new High Temperature Superconductors
 - -> for use in applications
 - -> to find more examples to help build a theory for HTSs
 - -> to find the "Holy Grail" Room

Compound	Predicted T_c	Class
$\mathrm{PrCaBiSr}_{2}\mathrm{Cu}_{2}\mathrm{O}_{7.46}$	104.6 K	Cuprates
$ m YTiSr_2Cu_{2.74}O_{6.76}$	$91.7\mathrm{K}$	Cuprates
$\mathrm{TeYSr}_{2}\mathrm{Cu}_{2}\mathrm{O}_{7.75}$	$89.8\mathrm{K}$	Cuprates
$C_{2.52}Ni_{0.92}Y_{0.71}Th_{1.0}$	$85.3\mathrm{K}$	Others
${\rm Si}_{0.62}{ m V}_{0.91}{ m Zr}_{0.83}$	$84.7\mathrm{K}$	Others
$Al_{2.34}Te_{0.64}Ir_{1.07}$	$84.7\mathrm{K}$	Others
$TlCaASr_2Cu_2O_{7.82}$	$73.9\mathrm{K}$	Cuprates
$YCaBa_2ZnCu_{2.36}O_{7.54}$	$71.5\mathrm{K}$	Cuprates
$\mathrm{HgCsSrCa}_{2}\mathrm{Cu}_{2.56}\mathrm{O}_{8.66}$	$69.8\mathrm{K}$	Cuprates
$\mathrm{Be}_{0.16}\mathrm{Si}_{1.09}\mathrm{V}_{2.67}\mathrm{Y}_{1.72}$	$62.4\mathrm{K}$	Others
$Cu_{1.13}Nb_{3.0}Sb_{0.72}Ir_{1.05}$	$59.4\mathrm{K}$	Others
$GdCaRuSr_{1.83}Cu_2O_{8.71}$	$40.8\mathrm{K}$	Cuprates
$Ga_{0.62}Nb_{2.88}Sn_{0.65}Te_{0.79}$	$40.8\mathrm{K}$	Others

GAN was able to generate predictions matching its training data as seen to the right
Clustering results to the right; GAN was able to generate superconductors from all the different major families

 However, it was unable to generate any novel families

Training Data	Cuprate %	Pnictide %	Other %
Cuprate	92.76%	0.06%	7.18%
Pnictides	0.02%	99.84%	0.14%
Others	0.14%	0.6%	99.26%
		tidoo	- 41

 Temperature Superconductor
 Augment Data for future computational work with superconductors

$B_{1.73}C_{1.03}Ni_{1.12}Y_{0.66}Pt_{0.64}$	$40.8\mathrm{K}$	Others
RuTeSeFe	$35.6\mathrm{K}$	Pnictides
${ m TeSSeFe}_{1.05}$	$31.0\mathrm{K}$	Pnictides
$CeCoAs_{2.15}$ $Fe_{1.39}$	$23.3\mathrm{K}$	Pnictides
$CeThPAsFe_{1.59}$	$12.2\mathrm{K}$	Pnictides
${ m GaPrCa}_{2.58}{ m As}_{12.44}{ m Fe}_{6.34}$	$11.9\mathrm{K}$	Pnictides
NdOAsFe	$4.5\mathrm{K}$	Pnictides

Selected list of potential superconductor candidates

Future Work

- Physically test the candidates for superconductivity since the tests in this project were computational
- Account for **charge** and **crystal structure** in compound encoding (though it may be difficult due to the lack of such data)
- Employ **active transfer learning** to search specifically for High T_c • Try different architectures like Conditional GANs

Unless otherwise noted, all images were created by the STS finalist.