Novel Self-Supervised Deep Neural Networks for 3D Human Shape and Motion Reconstruction From a Monocular Video

Introduction

Real-world applications of 3D Human Motion Reconstruction:

Virtual Reality Ryanking999, iStock

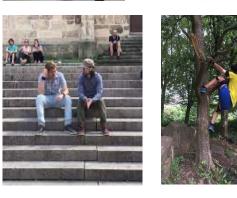
Augmented Reality FC Bayern, 2017

Telepresence Microsoft Research, 2016

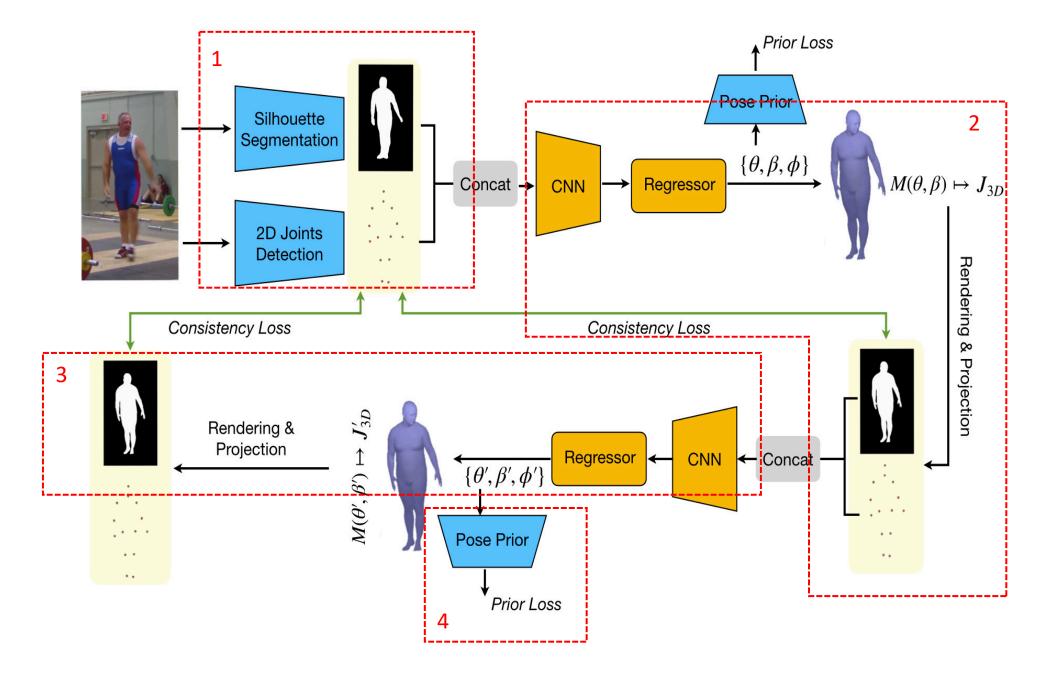
Challenges:

- 3D reconstruction is a missing information recovery problem due to the absence of depth information from images/videos;
- Many hard-to-obtain training pairs consisting of human images/videos and their corresponding **3D models** are needed;
- Performance degradation occurs due to **poor domain** adaption between controlled settings and in-the-wild environments.

Research Problem & Objectives


Limitations of Existing Methods:

- 3D sensors are costly & not readily available in the real world
- Annotated 2D-3D training pairs are required for supervision
- Not generalizable to versatile human motion due to heavy reliance on 3D supervision


Objectives:

- 1. Design a deep neural network to reconstruct a 3D model of human motion with selfsupervision instead of relying on annotated 2D-3D training pairs;
- 2. Employ 2D joint locations and silhouettes to form a geometric representation to combat the negative impacts of appearance-based representations.

Geometric Consistency-based Self-Supervised Neural Network (GC-SSN) Architecture

- 1. Geometric Representation: silhouette and 2D joints extracted from input image
- 2. 3D Human Model Generator: convolutional neural network (CNN) and multilayer perceptron nonlinearly regresses features to obtain parameters for reconstructing the 3D model under selfsupervision
- **3.** Cycle-Consistency: the rendered 2D representation of the reconstructed 3D model is fed through the 3D Model Generator again
- 4. Pose Prior: the reconstructed 3D model is compared with the distribution of all possible human poses to penalize unnatural reconstructions

Experiments & Results

- GC-SSN trained and tested on public benchmark datasets
- Accurate 3D human motion models reconstructed from lowresolution input images
- Outperforms state-of-the-art

Conclusions

- Novel GC-SSN proposed to reconstruct 3D human motion
- Geometric representation and cycle-consistency overcome appearance domain gap
- GC-SSN is self-supervised, avoiding all manual annotations and 3D GT data acquisitions

Frame-based Methods	Human3.6M		3DPW		
	$MPJPE\downarrow$	$\textbf{PA-MPJPE} \downarrow$	$MPJPE\downarrow$	$\mathbf{PA}\text{-}\mathbf{MPJPE}\downarrow$	$MPVPE \downarrow$
SMPLify [Bogo et al., 2016]	-	82.3	-	-	-
HMR [Kanazawa et al., 2018]	88.0	56.8	-	81.3	-
GraphCMR [Kolotouros et al., 2019b]	-	50.1	-	70.2	-
SPIN [Kolotouros et al., 2019a]	-	41.1	-	59.2	116.4
Pose2Mesh [Choi et al., 2020]	64.9	46.3	88.9	58.3	106.3
GC-N (2D+3D GT) (Mine)	62.3	44.2	85.3	56.5	102.1

*All photos, graphs, and images are created by the researcher unless indicated otherwise.

- GC-SSN outperforms state-of-
- the-art approaches
- GC-SSN accurately handles 3D human shape and motion reconstruction from 2D videos

GC-SSN integrated into a HoloLens-enabled augmented realitybased remote coaching application