
On Multi-Round Privacy in Federated Learning

Abstract

Secure Aggregation is essential in federated learning to ensure that, in any given round, the server learns nothing about the local models of the users beyond their

aggregate. Secure aggregation, however, does not protect the privacy of the users over multiple training rounds due to the partial user participation at each round.

To quantify such long-term privacy leakage, a new metric termed as multi-round privacy has been recently introduced that requires that the server cannot reconstruct

any individual model using the aggregate models from any number of training rounds. In addition, a privacy-preserving structured user selection strategy known as

Multi-RoundSecAgg has been developed to ensure multi-round privacy while taking into account the convergence rate and the fairness in the user selection. Multi-

RoundSecAgg, however, provides a trade-off between the multi-round privacy guarantee and the convergence rate in the sense that stronger multi-round privacy requires

a larger number of training rounds. In this paper, we consider twoweaker notions of multi-round privacy, termed as weak multi-round privacy and semi-strong multi-round

privacy, which still require that the server cannot get any individual model. We show that considering these weaker notions allow for better convergence rates compared

to Multi-RoundSecAgg while still protecting the privacy of the individual users in a weaker sense.

Introduction

Federated Learning (FL) allows users’ data to remain private while used to train an

AI. This is done by sending a copy of the server’s model to each user, and having

the users train the model and send it back. However, sharing the local models

with the server still reveals information about the local datasets as demonstrated

by the model inversion attacks [3, 6, 10, 4]. Secure aggregation protocols address

this challenge by ensuring that the server does not learn anything about the local

models beyond their aggregate [2, 8, 5, 9, 1].

The Problem

However, secure aggregationmaynot protect the privacy of the users overmultiple

training rounds, when different sets of users participate in different rounds [7].
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Figure 1. A multi-round secure aggregation example, where the server can reconstruct all local

models. The set of participating users at round t is S(t) = {1, 2}, at round t + 1 is S(t+1) = {2, 3}
and at round t + 1 is S(t+1) = {1, 3}. If the local models do not change significantly over these

three rounds (e.g., the models start to converge), the server can reconstruct all local models from

the aggregate models of the three rounds.

The Solution

To solve this, we restrict which users can participate in each round of training,

according to some protocol. We can compare these protocols according to two

metrics:

1. AMulti-Round Privacy Guarantee. A multi-round privacy guarantee T guarantees

that the best the server can get is the aggregate of at least T local models.

2. The Average Aggregation Cardinality. This measures, on average, how many

users participate in each round of training. Because we restrict how we can

select which users participate, sometimes it will be impossible to find a valid

subset of users, so this takes into account how likely that is to happen.

Definitions

There are N users and we select K of them to participate each round.

The participation vector p(t) ∈ {0, 1}N is the characteristic vector corresponding

to the tth round of training whose i-th entry is 1 when user i is selected and 0
otherwise.

The participation matrix mathbfP (t) =
[
p(0), p(1), . . . , p(t−1)]> ∈ {0, 1}t×N .

Although there are several ways of defining multi-round privacy, we will use the

following:

Definition (Semi-Strong Multi-Round Privacy). (Semi-Strong Multi-Round Pri-

vacy). The semi-strong multi-round privacy guarantee T requires that, for all

t < T , if (P(J)>z)i1, . . . , (P(J)>z)it are the t elements of greatest magnitude, the

sum of the magnitudes is, at most, t/(T − t) times the sum of the magnitudes of

the rest of the elements.

We also need to define a metric for comparing different ways to restrict user

selection:

Definition (Average Aggregation Cardinality). The average aggregation cardi-

nality quantifies the expected number of participating users as follows

C = lim inf
J→∞

E
[∑J−1

t=0 ‖p(t)‖0
]

J
, (1)

where the expectation is over the randomness in A and the user availability.

Batch Partitioning

The originally proposed technique in Multi-RoundSecAgg[7] was Batch Partition-

ing. This strategy divides the users into N/T batches, and selects K/T batches

each round, where every user in each batch is online. The number of user sets in

this family is given by

RBP =
(

N/T

K/T

)

For example, if N = 6, K = 4, and T = 2, the batch partition matrix is given by

B =

1 1 1 1 0 0
1 1 0 0 1 1
0 0 1 1 1 1


This Batch Partitioning technique is provably optimal given a previous, stronger

Multi-Round Privacy definition.[7]

Half Partitioning

However, given the weaker Semi-Strong Multi-Round Privacy definition, we can

define a half partitoning technique:

Half Partitioning. AHalf Partitioning Matrixwith T = 2 is a binary matrix created by

stacking all rows created with the following process: start with N 0s, choose K/2
nonconsecutive terms (the first and last terms count as consecutive), and replace

each selected term and the following term with a 1. The number of user sets is

given by

RHP = 2N

K

(
2N/T − K/T − 1

K/T − 1

)

For example, when N = 6, K = 4, and T = 2, the half partition matrix is given by

H =



1 1 1 1 0 0
1 1 0 1 1 0
1 1 0 0 1 1
0 1 1 1 1 0
0 1 1 0 1 1
1 1 1 0 0 1
0 0 1 1 1 1
1 0 1 1 0 1
1 0 0 1 1 1


.

Comparison

Batch Partitioning and Half Partitioning have a semi-strong privacy guarantee

of T .

Half Partitioning more than doubles the number of rows.

The aggregation cardinality is also increased by Half Partitioning.

Conclusion

In this presentation, we have considered a weaker notion of multi-round privacy

and developed a user selection strategy that allow for better convergence rates

compared to batch partitioning while still protecting the privacy of the individual

users in a slightly weaker sense. An interesting future direction is to investigating

the robustness of half partitioning compared to batch partitioning against attacks

such as model inversion attacks.
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