Alpha Retinal Ganglion Cell Dysfunction Precedes Vascular Dysfunction in a Mouse Model of Type 1 Diabetes

Introduction

Diabetic retinopathy (DR), a complication of diabetes, is the leading cause of blindness among working-age adults (CDC)

DR is diagnosed by changes to retinal blood vessels, but changes to retinal neurons may occur first

• Thinning of retinal layers, changes in function (van Dijk, 2011) (Adams, 2012)

Retinal ganglion cells (RGCs) are the most likely neuron to show signs of damage

- Output neurons, indicate health of visual pathway
- Communicate visual features by firing spike trains in response to light stimuli (Goetz *et al*, 2021)

Specifically, alpha RGCs

• Affected by other retinal diseases (Della, 2017)

Input (light)

Results

Diabetic DT and DN **ON alphas** have lower peak and avg. firing rates.

Diabetic DT **OFF sustained alphas** have higher baseline firing rates and less surround suppression.

Purpose

To identify the earliest detectable effects of diabetic retinopathy in the STZ mouse model by testing the function and morphology of ON and OFF sustained alpha RGCs.

Diabetic DT **ON alphas** have smaller cell diameters. Diabetic **OFF sustained alphas** do not display changes in cell size.

Conclusions

- Earliest evidence of neurodegeneration in DR
- Changes in firing rate and cell size
- May affect contrast vision
- Damage precedes vascular changes
- 2 weeks post-diabetes induction, vessels remain healthy

Future Research

• Determine if the cell itself is affected or if the input it receives is affected by DR

- Test other mouse models of diabetes
- Identify pharmacological targets for treatment

References

Bleckert, A., Schwartz, G. W., Turner, M. H., Rieke, F., & Wong, R. O.L. (2014). Visual space is represented by nonmatching topographies of distinct mouse retinal ganglion cell types. Current Biology, 24(3), 310-315. https://doi.org/10.1016/j.cub.2013.12.020 Della Santina, L., & Ou, Y. (2017). Who's lost first? Susceptibility of retinal ganglion cell types in experimental glaucoma. Experimental Eve Research, 158, 43-50. https://doi.org/10.1016/j.exer.2016.06.006 Diabetic retinopathy. (n.d.). National Eye Institute. https://www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-diseases/diabetic-retinopathy Goetz, J., Jessen, Z. F., Jacobi, A., Mani, A., Cooler, S., Greer, D., Kadri, S., Segal, J., Shekhar, K., Sanes, J. R., & Schwartz, G. W. (2022). Unified classification of mouse retinal ganglion cells using function, morphology, and gene expression. Cell Reports, 40(2), 111040. https://doi.org/10.1016/j.celrep.2022.111040 Grimes, W. N., Schwartz, G. W., & Rieke, F. (2014). The synaptic and circuit mechanisms underlying a change in spatial encoding in the retina. Neuron, 82(2), 460-473. https://doi.org/10.1016/j.neuron.2014.02.037 Kern, T. S., & Engerman, R. L. (1996). A mouse model of diabetic retinopathy. Archives of Ophthalmology, 114(8), 986-990. https://doi.org/10.1001/archopht.1996.01100140194013 Kolb, H. (2003). How the retina works. American Scientist, 91, 28-35. https://webvision.med.utah.edu/wp-content/uploads/2011/01/2003-01Kolb.pdf Kwan, C. C., & Fawzi, A. A. (2019). Imaging and biomarkers in diabetic macular edema and diabetic retinopathy. Current Diabetes Reports, 19(10), 95. https://doi.org/10.1007/s11892-019-1226-2 Scholl, D. A. (1953). Dendritic organization in the neurons of the visual and motor cortices of the cat. Journal of Anatomy, 87(4), 387-406. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1244622/ Schwartz, G. W. (2021, March 25). Retinal Ganglion Cell Typology Project. http://rgctypes.org Vision Loss and Age. (n.d.). Centers for Disease Control and Prevention. https://www.cdc.gov/visionhealth/risk/age.htm#:~:text=Additionally%2C%20diabetes%20affects%20this%20age,%2Dage%20group%2020%E2%80%9374.