Understanding Incidental Microbial Communities Inside

Ordinary Concrete Toward Decarbonization

Concrete Contributes to >8% of Global

Living Microbes EXxist Inside Ordinary Concrete
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Decarbonizing the concrete industry to meet two major societal

needs:

* Reduce global CO, emissions to reach targets in 2016 Paris Agreement —
limiting warming to 1.5°C, which means reducing global emissions by 45 percent
from 2010 by 2030 (National Academies, 2022)

Concrete Microbes are Affected by

Physicochemical Properties and Environment
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Objective 1. Complete endolithic life-detection survey of various forms of ordinary
concrete gathered from various settings within a city environment.

Hypothesis 1: “Concrete-endolith hypothesis” — if the interior portions of concrete
are a suitable habitat for microbes, then various internal concrete or “endo-concrete”
samples will yield positive life-detection results.

 Significant relationships (p < 0.05) were observed between DNA concentrations
and physicochemical properties (density, carbonation, pH).

« DNA counts are higher in lower-density, low-pH, and highly-carbonated concrete.

» There were noteworthy variations in DNA among different concrete samples.

Objective 2: Explore supplemental methods for detecting and describing concrete
endoliths.
Hypothesis 2: “Endolith-concrete interaction hypothesis” — microbial community

Deciphering Concrete Endolithic Microbe Types

Type of DNA targeted for amplification
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more abundant in lower-density, lower-pH, and highly carbonated concrete.

» Bacteria are the most common microbes, and viable fungal microbes were newly
discovered to exist within ordinary concrete.

* The study opens a new avenue for “concrete microbiology” toward engineering
sustainable concrete to decarbonize concrete industry and mitigate climate change.
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