Modifying Naturally Sourced Flavonoids for Increased Antioxidant Capacity and Antisickling Activity

1. Sickle Cell Disease

- Sickle Cell Disease (SCD) is a group of genetic blood disorders that primarily affects those of West African descent.
- This disease impacts hemoglobin, the protein that transports oxygen throughout the blood.
- It causes red blood cells to change from their normal, disc shape to a crescent, sickle shape.

2. Antisickling Agents

- Sickling is caused by a lack of oxygen in Hb.
- Flavonoids are natural antioxidants that can prevent oxidative damage.
- Aldehydes are compounds that can bind to the sickle hemoglobin and strengthen its ability to take in oxygen, preventing sickling.
- The flavonoids Quercetin (Q), Galangin (G), Kaempferol (K), and Epigallocatechin gallate (E) were extracted from fruits and modified to have aldehydes on their structure.
- **Figure 1.** What is Sickle Cell Disease (SCD)? Centers for Disease Control and Prevention.
- This study utilized mechanisms in two antisickling agents to investigate a method of treatment of SCD.

3. Antioxidant Capacity

Table 1. Antioxidant Power Exhibited.			
Originals		Derivatives	
Compound	[Fe ²⁺ µM]	Compound	[Fe ²⁺ µM]
ASC	1494.648	ASC	1494.648
Q	430.4281	Q-1	192.2006
G	1861.6208	G-1	2318.9415
K	2472.4771	K-1	1759.0529
E	2199.5413	E-1	5038.9972

- Compounds were tested for their ability to reduce Fe³⁺ to Fe²⁺ with a higher Fe²⁺ concentration signifying a stronger reducing agent (antioxidant).
- All original flavonoids were strong antioxidants, stronger than Vitamin C.
- Some derivatives showed a large increase in

Figure 2. Flavonoid Structure. Prepared by author.

Figure 3. Aldehyde Structure. Prepared by author.

4. Antisickling Activity

antioxidant power, while others showed slight decreases.

5. Conclusions

- Flavonoid modification was successful in producing stronger antisickling agents.
- Antioxidant power is not the sole indicator of antisickling ability.
- E and E-1 presented highest potential as both strong antioxidants and antisickling compounds.
- No increase in absorbance shows that they completely inhibited sickling over time frame

References

All images and figures created by author unless otherwise noted.
Data & Statistics on Sickle Cell Disease |
CDC. (2022, May 2). Centers for Disease
Control and Prevention.
Mayo Clinic. (2022, March 9). Sickle cell anemia - Diagnosis and treatment - Mayo Clinic.