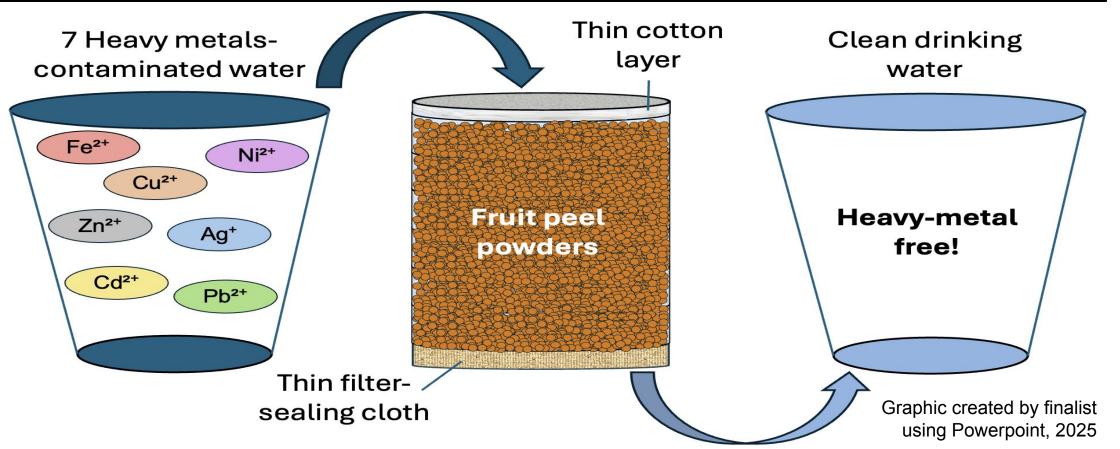
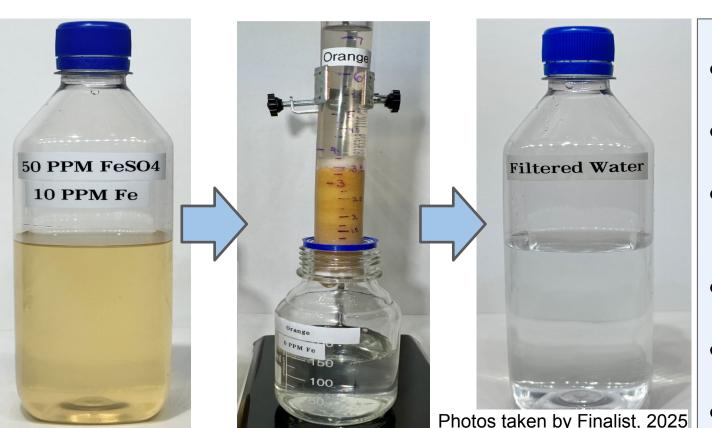
Issue Statement

Heavy Metal Contamination spread through water:

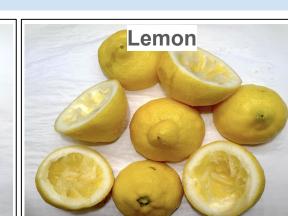

- Affects 1 in 3 children
- worldwide • **Lead** contributes to **1.5** million deaths per year
- Natural disasters worsen heavy metal pollution
- Fruit Waste: ~45% of all fruit production is wasted
- Fruit waste is the biggest contributor to food waste


Research Objectives

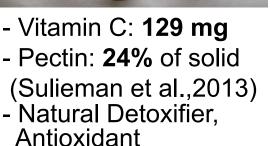
- **Develop** a nearly zero cost method for heavy metal toxin removal using fruit peel waste without any chemicals
- Conduct a comparative analysis of four types of fruit peel waste to determine the most <u>effective</u> option when implementing developed method; explore its mechanisms
- Design, build, and test two prototype filters for real world application

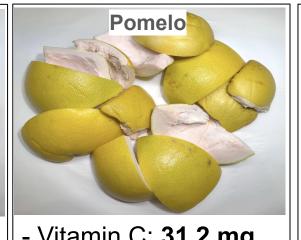
My Innovative Solution

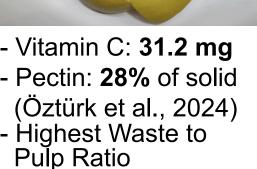
Create a novel method where fruit peel waste can be made into a sustainable filtration material using household items capable of removing at least 7 types of heavy metals and contaminants, providing a nearly zero cost solution for safe drinking water



Filtration Design Criteria:


- Filters contaminated water into safe, drinkable quality
- Removes 7 heavy metals
- (Pb, Cd, Cu, Fe, Zn, Ag, Ni) Uses only common household materials (no lab
- equipment involved) • Only uses fruit peel waste for
- sustainability (no chemicals)
- Nearly zero cost, accessible for under-resourced areas Achieve reasonable flow rate


Experimental Materials


4 Fruit Peel Wastes

Vitamin C: 8.7 mg Pectin: 21% of solid (Sriroth et al., 2017) Most Globally Produced Fruit

Table created by finalist, 2025

Images taken by finalist, 2025

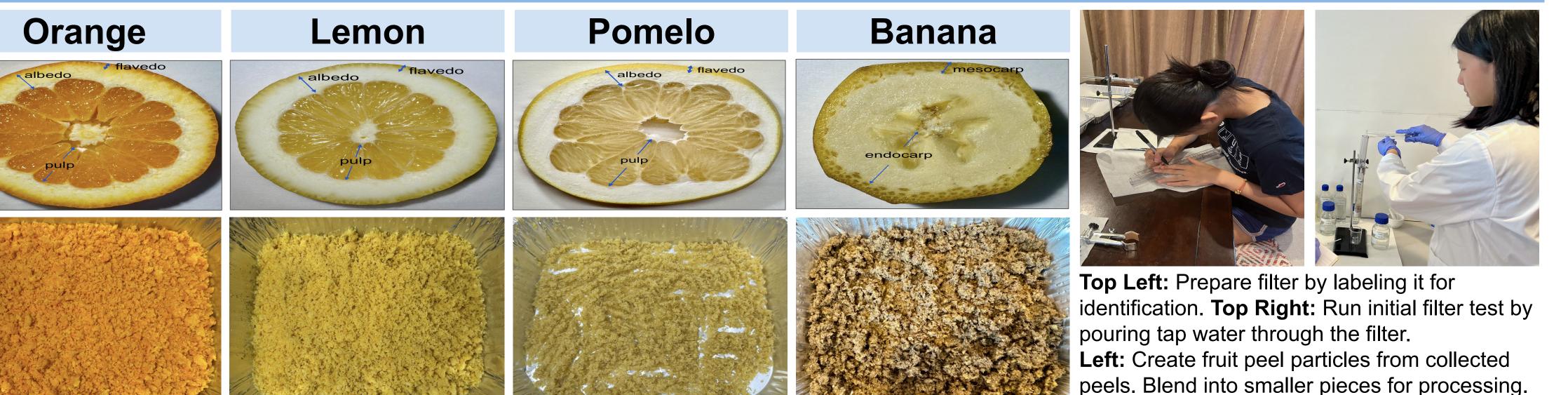
7 Heavy Metal Solutions & 2 Mixed Solutions

Metal Selection Criteria

Vitamin C: 136 mg

- Pectin: 30% of solid

- Highest Vitamin C


2 Mixed Solutions:

- most common metal contaminants in water - Cu + Fe + Zn (10 PPM) - Pb + Cd + Cu + Fe + Zn + Ag + Ni (10 PPM) - harmful to the human body

		•			•	`
Lead(Pb) Pb(NO ₃) ₂	Cadmium(Cd) Cd(NO ₃) ₂ · 4H ₂ O	Copper(Cu) Cu(NO ₃) ₂ · 3H ₂ O	Iron(Fe) FeSO ₄ · 7H ₂ O	Zinc(Zn) Zn(NO ₃) ₂ · 6H ₂ O	Silver(Ag) AgNO ₃	Nickel(Ni) Ni(NO ₃) ₂ · 6H ₂ O
10 ppm	10 ppm	1, 10 ppm	0.3, 10 ppm	5, 10 ppm	10 ppm	10 ppm
-Gasoline, batteries -Behavioral harms -High fatality rates	-Mining, industrial activity -Damages liver, heart -Hazardous to wildlife	-Wiring, plumbing -Damages liver, kidney -Hazardous to wildlife	-Industrial activity, plumbing -Damages immunity, -Induces pathogen	-Waste runoff, production -Anemia, harms immunity -Harms	-Mining, chemical production -Hurts lungs, organs -Harms wildlife	-Plumbing systems -Gastro-inte stinal issue -Harms wildlife

Peel To Purify: An Innovative Fruit Waste-Based Solution for Contaminated Water Treatment

Experiment Preparation: Fruit Peel Particle Forming and Filtration Set-up

Development of Fruit Peel Waste-Based Water Filtration Method

Result 1: Test Strip Trial Analyses and RGB Sensor Method

Collect fruit peel wastes to help create at 100 °C) to remove

RGB Analysis

Copper 10 PPM

Iron 10 PPM

Boil fruit peels (~3 mins a more particle-ready natural oils that may be water repellent.

Utilization of RGB Sensor Method

RGB Color Sensor Detection Method uses software to find RGB values of a certain color patch. Compare

those values with reference standards and other test results to better determine removal effectiveness

Blend the boiled fruit peels at 9000 rpm for ~15 s. This creates an even consistency.

Air-dry powders outdoors for ~7 hours. This helps preserve particle properties.

Submerge filter for ~20 s prior to filter contaminated water for optimal effects.

pH Value Comparison

• Alkalinity (pH above 7) indicates more dissolved minerals which disrupt digestion

• Metal ions make water more acidic, but filtration restores neutrality except for

Acidity (pH below 7) can cause tooth enamel erosion

Tap water starts and stays neutral after filtration

lemon, which remains slightly acidic

Images taken by finalist, 202

Filter heavy metalcontaminated water to get clean water free of heavy metals!

Images taken by finalist, 2025

 ~4 gram of fruit peel powders filters >12L with fastest flow rate

Efficiency Calculations

Filter

Filtration Time

(50 mL)

 After > ~12 L, flow rate may reduce; filter still functions with reduced flow rate

Cause for Different Flow Rates

- Powders have same granularity while dry
- Powders have different
- lignin, pectin compounds • This variates porosity
- (amount of space between particles)

pH Testing Results

Study of Flow Rate and pH Level

Pomelo

1' 58"

Improving Flow Rate

(Prototype 1)

of water:

Banana

1' 30"

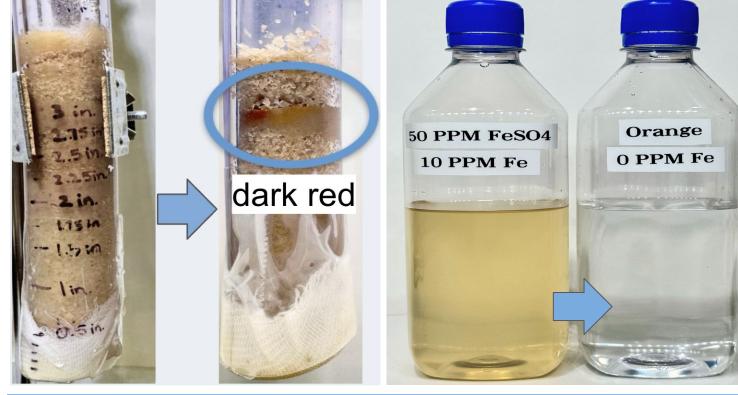
Powders of Different Fruit Peels

Lemon

• Pressurize filter using pump:

• Enlarge size of filter, quantity

Natural water pressure is added


Banana Pomelo Lemon Orange

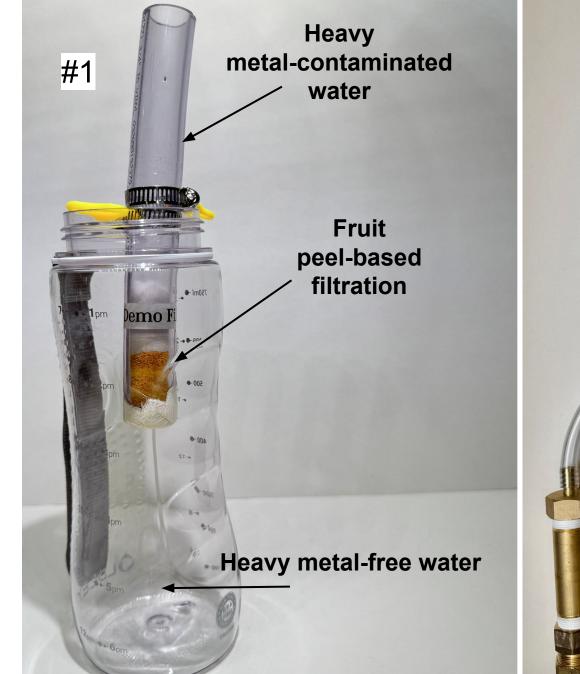
Add air pressure to filter

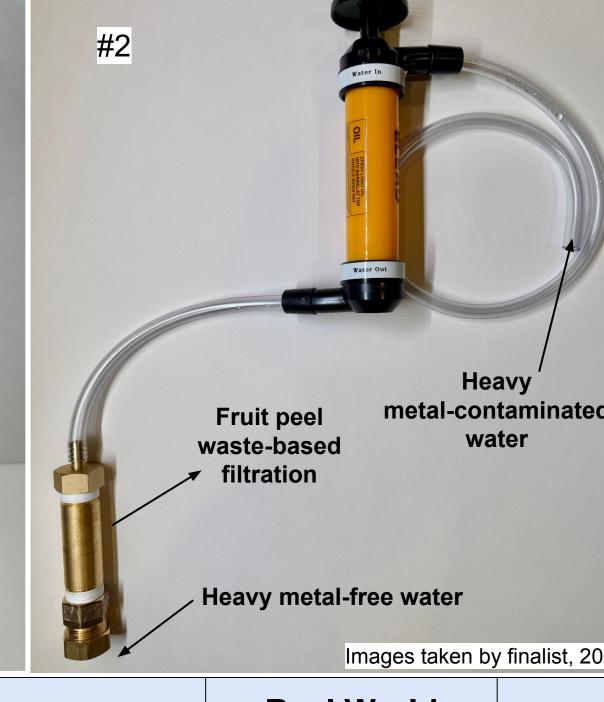
• pH remains unchanged around 7 before and after filtration

Why My Filters Work

Filter Color Change Water Color Change Physical & Chemical

Properties: Heavy metal particles are blocked and absorbed by the fruit peel powders through natural lignin, cellulose, and pectin structures, which bind


to the metal ions.


Images taken by finalist, 2025

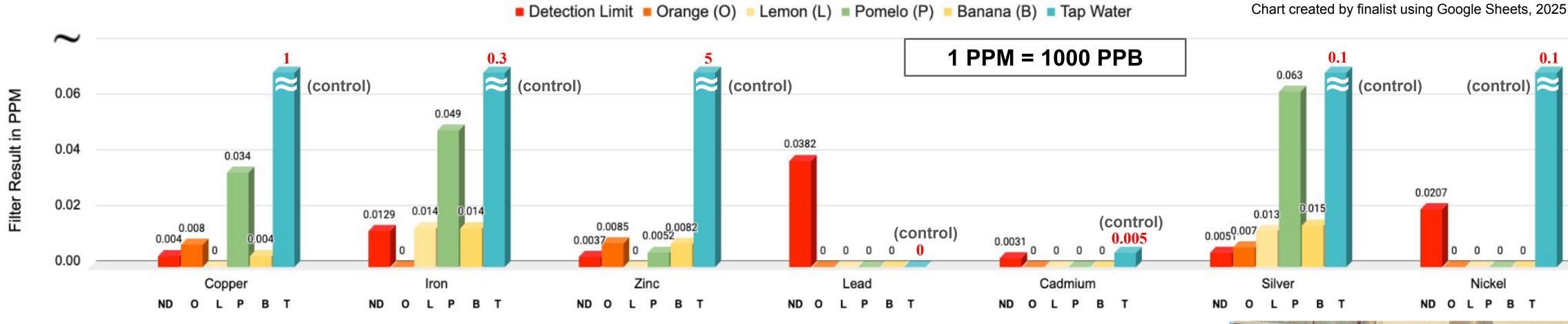
Orange

Table created by finalist, 202

Prototype Demonstrations

			Images taken by	Images taken by finalist, 20	
Designs	Pressure	Flow Rate	Real World Applications	Cost	
Prototype #1	No (0 PSI)	~30 mL/min	Portable and EasyUsageNearly Zero Cost	\$0.50	
Prototype #2	Yes Pressurized by hand (~44 PSI)	~300 mL/min	 Filters Large Quantities Portable and Faster Flow Rate 	\$6	

 Developed a novel fruit peel waste-based filtration system for successful heavy metal removal of 7 toxic metals (Pb, Cd, Cu, Fe, Zn, Ag, Ni)


Conclusions

- Banana peels were generally most operative among the 4 types of fruit peels (Orange/Lemon/Pomelo/Banana), balancing efficiency with effectiveness at filtration.
- The combined filter (Lemon+Banana) performed up to 1250x better than the US Environmental Protection Agency (EPA)'s drinking water standard.
- The proposed solution works as a primary filtration system; it can also be integrated as an add-on to extend filter lifespan and filtration effectiveness.
- <u>~4 gram</u> of fruit peel powders <u>filters >12L</u> with <u>fastest flow rate</u>

Future Work

• Expand to more fruits, test removal effectiveness of more heavy metals, study long-term filtration efficiency, expand range of tested contaminants

Result 2: Atomic Adsorption Testing at Professional Laboratory

- Atomic adsorption spectroscopy (AAS) was used for heavy metal solution lab testing; defined substrate technology (DST) was used for E. coli quantification.
- All filters reduced all 7 heavy metal concentrations by over 3000x, from 10 PPM to PPB. These results outperformed the US EPA's drinking water standards by up to 1000x. - Lemon/Banana Filter reduced 10 PPM of copper/iron/zinc solution by up to 1250×; hybrid

Orange/Lemon/Banana/Pomelo filter reduced solution of all 7 heavy metals to non-detectable levels.