AIM-BASE: Al INTEGRATED MODEL TO PREDICT THE ENERGY CONSUMPTION OF EXTRA-TERRESTRIAL COLONIES

Grand Challenge Problem Facing Humanity

Experiment /

AIM-BASE: Modeling / Simulation as a vehicle to predict DIgBEI el Pyth;n S?ftt_warefsl\)n/szlelrs for
Context: Creating and sustaining extra-terrestrial colonies is the next frontier of energy needs & scenario planning for a Martian colony Scientific ALl oy kel
human exploration. Interdisciplinary Science: Blends Cosmology + Energy Modeling + Computer Science + Al Discovery Theory
Motivation: Before we embark on that, we need to fundamentally understand Tool for Energy Baselining: How much energy we as a species need to produce to sustain an — Modular Python Packages for )
the baseline energy requirements for a human space colony. extra-terrestrial colony based on plausible technologies & perform “what-if” scenario planning Key Pillars
% How can we predict and optimize energy requirements? BB Models for ENgE Modeling /
. : . . : : I r ; ;
% Provide policy makers / mission planners a what-if scenario tool Y OCE1S 1S gy /{9 Python-based Simulation Simulation Al & Data AIM-BASE/ (~ 2500 lines of Python code)
_ _ _ Production and Demand Science | EnergyModeling.py (main)
Approach: AIM-BASE integrates advanced analytical modeling, Python based | Gontisan = 300 RS
computer simulations, and Al reinforcement learning driven optimizations to Key Pillars for sustaining a ?”’Od‘,;/’ar packages models)
develop efficient & adaptable resource management systems for a Mars colony. Colony in Mars e | Model | ColonyPillars/ (packages to import)
Water =5 Training I_\(/)VaterModeIs.py

: S L. __OxygenModels.py
Scientific Merit: J'SciPy Software Object | EnergyProductionModels.py
“ Models the dynamic energy demands and constraints of Mars’ harsh Oxygen System to | Oriented Used PPO Al to Optimize |__InfraModels.py

environment and varying conditions. o SON Simulate RL model Energy I—égiré“)"(gfsﬂsc;gils oy
o Focus_, on understanding the energy needs of life sustaining critical systems & Config file Energy st & Demano!s / I T oL L a——

techniques. Infrastructure Feedback loo for model 1 e )7 Debug Production |___AlWater.py
% Explores innovative base designs and technologies, emphasizing < P parameters I_ﬁ:_O;(ygen-py

P ] . : : : ____Alinfra.py

energy-efficient solutions for oxygen generation, water production, and Science Experiments |* . .. . test,@ y OpenAl Gym env " Alenergyproduction.py

thermal regulation of the habitat. _ with different values of , Deep Learning via to build RL __ Alsciexpts.py
< Its comprehensive simulations empower users to conduct "what-if" scenario Energy Production | config params helps to Yonell meigyy DIl iy LU Reinforcement Learning -

Solar/Nuclear refine & verify Energy Produced in KWh (RL)

planning, optimize infrastructure, and evaluate energy mixes for long-term
viability.

correctness of models

Python implementation
of the energy models

Al coded into Python SW simulation to provide new configuration / Python Code for Moxie vs. Electrolysis use Scenario

Overview figure created by finalist using Google Slides, 2025 ParamS and aCtionS for enel’gy mOde/ Optimizations

in Oxygen Energy Demand

def transition_moxie_electrolysis(params):
W _low = params['W_low'] # water level for low reserves
E_high = params['E_high'] # surplus energy for high energy

Technologies / Artefacts / Considerations for a life

Oxygen PrOdUCtion Energy Demand Solar/Nuclear Energy Production E_moderate = params['E_moderate'] # surplus energy for moderate

Models & What-if Scenario Analysis T shift_t_prev_o2 = params|['T_shift_t_prev_o02'] # Transition factor

sustaining colony & used in analytical modeling

Models & What-if Scenarios Analysis

Avg water use = 150-350 Kg/day/person Martian Regolith with Ice Solar Energy production

delta_t = params['delta_t'] # Time step duration

_ needed for water production Energy for Moxie O2 production P _p P - kappa_02 = params['kappa_o2_transition'] # Transition rate
{ ‘ M kWh /b i solar_t = Ppeaik * fseason * (1 — Puststorm * Odust) * dustremoval if calculate_water_available(params) < W_low and
Reqolith contai tor in the f o » Drilling for Ice Extraction, Melting, E . — coz - per_kg 02 Shift( ) The solar energy production P_solar t is calculated as the product of the solar ) calculate_energy_surplus(params) > E_high:
eqgoliin contains water in tne rorm o . . moxie — . . . .
hyc?rated minerals and ice in polar regions Water Purification, Storage Thmoxie pegk energy, seasonalladjustment factor, and the eff|.0|ency of dust removal, print("Using MOXIE. Low water levels and energy surplus")
P X , o P " o — adjl{sted forttr;e re((:JjL.th:tlon cauhsed gy dtustt stormst.)Tgll.s; moddel accoun’;s for ) return 1 # Full MOXIE
_ ! W i environmental conditions such as dust storm probability and seasonal variations. ] ,
- Avg O2 use = 0.8 Kg/day/person Electrolysis: Splitting H20, but actors in the mass O Fisas ,(, _C02), the eNeTgy Needet PETRg OF Ltygen Proguce - i Y ~ elif params['W_available'] > W_moderate and params['E_surplus'] <
c : (KWh/Kg_02), a time-dependent transition factor (T_shift(t)), and the efficiency of the system. .
S = { l water is scarce Nuclear Energy production E moderate:
S _
. . . n rint("Using Electrolysis for 02"
S = , . Energy for Electrolysis O2 production P _ P print{ . yoIs )
. Mars Oxygen In-Situ Resource Ultilization MOXIE: CO2->02, but high energy nuclear — SMR,i * TISMR,i return O # Full electrolysis
9D Experiment (MOXIE) debuted by Perseverance Mwater electrolysis * kWhper_kg_02 * ( 1— T;hift (t)) =1 else:
g 0=> Rover Mission. Scenario planning should consider Eelectrolysis = = P ] .
N W when to use MOXIE vs. Electrolysis Telectrolysis [Nuclear energy is the sum of each reactor's power output multiplied by its efficiency. ] print(" Using both MOXIE and Electrolysis for 02")
£ 0 : w return T_shift_t prev_o2 + (delta_t * kappa_o02)
o "'u', ( 7 Habitat: temp. control, radiation The mass of water times energy per kg of O2 times percent of O2 from Transition between Solar and Nuclear
o S L J shielding, structural stress electrolysis divided by the efficiency of the system. ( . def calculate_moxie_energy(params, T_shift_t):
0 .9 , - _y ]-a if P duststorm,t < ¢threshold and f season,t = f min
&J = The model for infra factors in radiation 7 ¢ p ’ ’ M_CO2 = params['M_CO2'] # Mass of CO2 processed
= shielding efficiency if the Mars habitat is built .y . = 1 < fmi . .
'g § inside a%ava tube!y (e.g., near Elysium Planitia) Transition Between MOXIE and eIGCtrOIy =2 o | O’ Phattery,t 1 dustsj; ot > ¢threshold . fseason,t B fmm kWh_per_kg_02 = params[kWh_per_kg_02]
3 0 T;;olar,t,prev TRy f season,t otherwise E_moxie =M _CO2 * kWh_per kg 02 *T shift t/
S5 Optimal Potatoes, Spinach 1 if Wavaitable < Wiow and Egyrplus > Ehigh \ e
IMmal Crops: Fotatoes, iInac ' ' _ _ ! ia!
% o P P P . i oW s : The equation decides solar energy usage: 1 for full solar, 0 for no solar and full params['eta_moxie’]
lg % 4[ }— Tshift =40 if Wava.ilable > Wmoderate and Esurplus < Emoderate nuclear, or a mix of two based on battery power and demand. return E_moxie
= Aquaculture: Fish farming Tenits, prev + (0 - ko2) ~ otherwise Seasonal Amplification factor model of solar energy
S Seasons can heavily influence solar energy
and are factored into the model using a The model determines the transition factor T_shift for Oxygen production. It outputs 1 for full f —1402-sin 27 - (tseason — Thax sunlight)
sinusoidal wave function Solar Panels: Probability of dust MOXIE usage when water is low and energy is abundant, O for full electrolysis when water season i 687 Al t = y -
i ’ o Optimize Models’ Energy Production and Demand
storms, efficiency, seasons is sufficient and energy is limited, and adjusts incrementally otherwise. _ : _ P gy
| [The seasonal adjustment factor is calculated as 1 plus 0.2 times the
sine of a term representing sunlight variation over a Martian year. . , , ;
Small Modular Reactors (SMR): Al Code Snippet: Highlights heart of RL. observe—act—learn—improve
lot of cooling needed .
2 Water Production Energy Demand o . | - o
. . . Environment Setup: Martian colony’s energy model systems where Al learns.
MOdels & What-lf Scena"o AnaIySIS env = EnergyProductionEnv(params, P_total demand) # Setup custom environment with
Results: Evaluation of Energy Models with its Parameter OpenAl Gym for the energy production pillar model with its params; Configure high/low values
Space, Python Simulation SW & Al Optimizations Energy for Regolith (Ice) Drilling for env’s state, captured by its key params, thereby creating an observation space.
s Q Define the RL PPO Model: The brain that makes decisions to improve energy efficiency.
Pdl‘l] “ PO * ln 1 -+ 50 . @ "2'ldrilling ) -
. . il - p —((a:c+ﬂ:c+~y ) ) ; (1 +P,- e 02z (1+ sin(w:z:))) . (Ro + ,3331'5) ‘Wz) fr-(1 -¢(z))| de from stable_bl?selmes.3 Twport PPO | N |
Energy Needed to Sustain a POpUlatlon of 100 People Mo - € wear model = PPO("MlpPolicy", env) # PPO algorithm for decision-making
B Energy Demand: Water M Energy Demand: Science Expts Ene‘rgy Demand: Oxygen M Energy Demand: Infrastructure /The total drilling energy is determined by summing contributions from multiple drills, accounting for depth, power, resistance, ) 3 Training Process: The Al tests different strategies to learn what works best.
B Energy Demand: Agriculture W Energy Production efficiency decay, material properties, and environmental modifiers. Key factors include dynamic and cyclical power adjustments, model.learn(total_timesteps=50000) # Al learns by trial & error to maximize energy output
100000000 _A — 25111474 material porosity, and corrections for depth and wear. Efficient & powerful Actions & Rewards: Al tries an action, gets feedback (reward), and adjusts
SR N v way to optimize a ' '8 ’ J |
. dynamic & complex = 5
10000000 8,445,637.49 Energy for Ice melting . _ _ environment by Opt_lmlzmg What* | 4) Making Decisions (Policy Inference)
P Calculates the energy required to melt ice (E_melt) using the total mass of water monitoring usage Config Parameters used by _ . . .
T(z) (M. total water). the integral of th A ty of ice (c_ice(T)) i the energy models to obs = env.reset() # resets state parameters in the observation object
otal_water), the integral of the specific heat capacity of ice (c_ice(T)) over the . _ , , , _
Enet = Miotal water * / Cice(T) AT + L, — = = > sy RN . Tweak both energy represent physical processes action, = model.predict(obs) # Al picks the best action based on what it has learned
E 1000000 604734653 529,088,689 741{,974.19 ey temperature range (T_|n|t|a| to T(X)), and the latent heat of fusion of ice (L_|Ce). SUpply & demand (e_g_, dr||||ng’ solar energy
E — = A meels production) [5) Feedback Loop (Reward System)
bl e Energy for water purification Aig'zveeiizgeci?i‘;tﬁﬁrges obs, reward, done, info = env.feedbackLoop(action) # Al receives feedback (reward) to improve
% v Y Moater * Lyaporization How is Al Applied? efficiency in the habitat) future decisions. Continually updates params in observation space to realize action
c Epurification = Pritration - (1 + Pciog - (1 —€77)) + + (Pov + Prhemicat) | dV Reinforcement Learning
= 10000 0 Tdistillation (RL): Energy models’ def feedbackLoop(self, action):
e et . . . . ety el environments captured as . . .
Calculates the total energy for water purification by integrating filtration, distillation, and additional treatment “S\t/lates" ey Saurams); # Apply actions to modify params dynamically
- energy over the total volume. It accounts for clogging, vaporization efficiency, and UV/chemical treatments. Desired outcomes as if action == 0: # Enhance battery capacity by 20%
“AC;'?%S;’ t‘;r?jZf,'Te';‘:ezgizgy; self.params['E_stored'] = min(self.params['E_stored'] * 1.2, 1000000)
A Energy Model for water demand & mewares Tepre Lo ki 4, -~
Energy Before Al Energy After Al 9y The variables describe water availability and usage: W_produced represents incentives / disincentives as elif action == 1: #Increase solar panel efficiency by 10%
W oduced + Wetored => W daily generated or extracted water, W_stored accounts for reserves in storage tht‘;fzt gr']gg;':grr: :"S’ae:eps self.params|'eta_panel'] = min(self.params['eta_panel'] * 1.1, 1.0)
Graph created by finalist using Google Sheets, 2025 produce stored = ¥¥ demand systems, and W_demand is the total daily water required. reward = updated_energy_production - self.initial_energy_production




