A Novel Self-Sustainable Kit to Combat Rural Vitamin A Deficiency During Pregnancy and Early Childhood

Vitamin A

- → A fat-soluble vitamin, vital for maintaining healthy vision, supporting immune function, and promoting cell growth.
- → It plays an essential role during pregnancy, and is also crucial for the healthy growth, an development, of neonates.

Vitamin A Source:

- Retinoids: Animal Sources (Liver, eggs, and
- Carotenoids: Carrots, sweet potatoes, and

β-Carotene → Retinol (Active Vitamin A)

Vitamin A Deficiency

Risks:

Vision problems: Dry eyes, night blindness, and in severe cases, permanent blindness (esp. in infants, children and pregnant women).

Complications during pregnancy: Pregnancy-induced hypertension, preterm delivery, and intrauterine growth restriction, etc.

Fetal abnormalities: Bone and Epithelial cell growth-related.

Delayed Growth and Development in pre/neonatal stages and and low birth weight.

Weakens the immune system: especially in children, and pregnant women: Increasing the risk of infections particularly respiratory and diarrheal infections, as well as measles.

Prevalence:

- → VAD effects one-third of children worldwide.
- → Highest rates in sub-Saharan Africa
- (48%) and South Asia (44%). → Vitamin-A supplementation potentially reduce all-cause
 - mortality in children by ~12-24%.

Fig. 3: Child with night-blindness.[3]

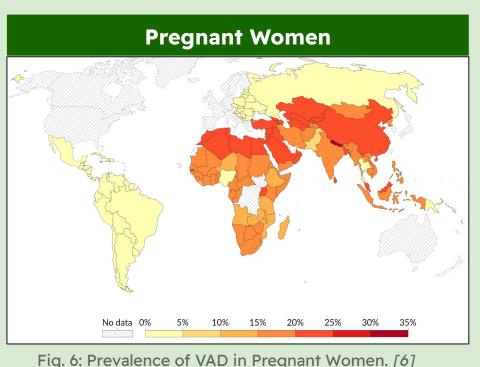

Fig.1: Structure of Retinol

Fig.2: Structure of β-carotene

Children (6-59 months old)

- suffering from VAD. Highest in Africa (14-20%) and South-East Asia (10-15%).

→ ~19 million pregnant women

Objectives

Long-Term Goal: To create a self-sustainable dietary kit that supplements Vitamin A

HYPOTHESIS: Selective microbial systems can be used to produce sufficient β-carotene in staple starch diets to alleviate vitamin-A deficiency

Phase 1: To establish the feasibility of growing edible microbial cultures that produce β -carotene, the precursor of Vitamin A.

The specific objectives for phase one are:

- 1. Identifying edible microbes that produce β -carotene.
- 2. Selecting appropriate starches for the fermentation process.
- 3. Developing methods for extracting and detecting β -carotene from biomass.
- 4. Evaluating the feasibility of producing β -carotene through fermentation

Methods

- 1) Seed Culturing of Blakeslea trispora: a) Potato Dextrose Agar (2%) petri dishes at room temperature for 2-5 days. b) 1:1 ratio of water to oatmeal, at 215 RPM at 25°C for 3-6 days.
- 2) Tapioca Culture: 5 % Tapioca for submerged culture and 20 % for solid state culture. Variations included the presence or absence of other supplements (0.5% of yeast extract, 0.13%) of potassium phosphate, and 0.04% of magnesium sulfate. The cultures were incubated for 5, 7, or 9 days.
- 3) Sterilization: All media were autoclaved at 121°C for 45 minutes. The sterilized samples were handled under a laminar flow hood to maintain sterility.
- 4) Drying of Biomass: Post-fermentation, the the whole biomass was dried using one of the following methods: a) Oven Drying: Heated at 70°C for ~24 hrs, or b) Freeze Drying: Samples were frozen at a slant and placed in a freeze dryer at -80°C for ~48 hours.
- 5) β-Carotene Extraction: The dried samples were crushed using a hand grinder. 0.2 grams of each sample was mixed with a teaspoon of sand and had grinded for ~30 sec. B-carotene was extracted from the grinded sample with 5 mL of ethyl acetate in a shaker for 30 min. Finally, the extracted solution was injected into HPLC for analysis.
- 6) β-Carotene was quantified using Shimadzu LC-40D HPLC with a C18 column and Diode Array Detector (DAD). The mobile phase consisted of Acetonitrile: Methanol (90:10) at a flow rate of 1.5 mL/min. The concentration in the sample was determined by comparing chromatogram peak areas to a standard curve prepared with commercially purchased **β-carotene**.
- 7) Data Analysis and Statistics: Data analysis and the preparation of graphs was performed using Microsoft Excel. All experiments are performed at least in triplicates; repeated in 3 different days. Differences between groups were analyzed using a paired two-tailed Student's t-test, with statistical significance defined at p < 0.05

Edible Microbes that Produce β-Carotene

- Mucor circinelloides (Fungi)
- 2. Rhodosporidium toruloides (Yeast)
- Blakeslea trispora(Fungi) 4. Sporidiobolus salmonicolor(Fungi)
- 5. Phaffia rhodozyma(Yeast)

Blakeslea trispora produces high yields of β-carotene, thrives on a wide range of substrates, and environmental

conditions.

Fig. 7: Blakeslea trispora

agar plate, 2024. [7]

Tapioca was selected for: • its high starch content

Selecting Microbes and Starches

fewer microbial growth inhibitors and complex fibers—efficient

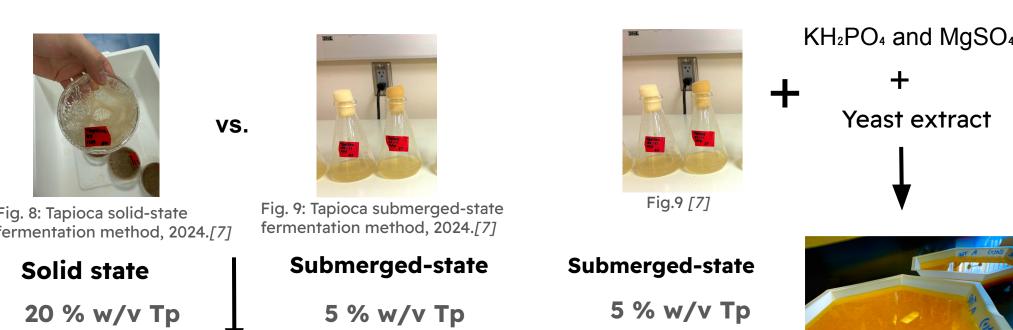
microbial metabolism.

Rice

3. Taro

4. Yams

5. Finger Millet


Maize

Starches in the Affected Areas

2. Tapioca (Cassava Starch)

widespread availability in affected

Feasibility of Growth in Tapioca (Tp)

The fungi grew in Tapioca but didn't produce any detectable β-carotene

B-carotene: 84.22 μg/g of dry weight.

Fig. 10: Tapioca submerged-state fermentation samples, 2025.[10]

Agar Plate Seeding

Tapioca serves as a viable energy source for Blakeslea trispora but requires salts and yeast extract to enable any β -carotene production.

Effect of Drying Method on Stability

Seeding Method & Harvesting Time

Seeding Method: The fungi was grown on an agarose petri dish or in oatmeal broth before inoculating it in Tapioca broth

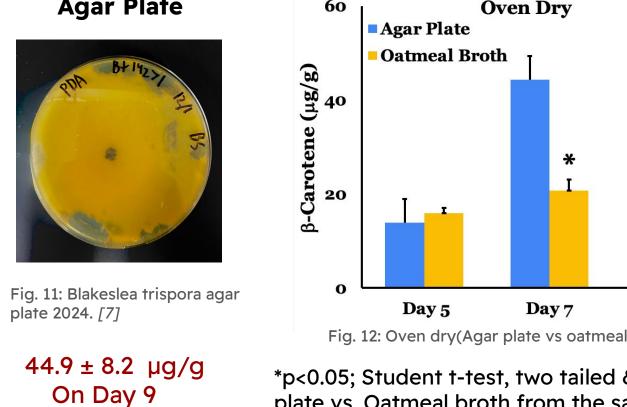


Fig. 16: Oven dried biomass(Agar plate vs Oatmeal Broth) graph.[8]

Fig. 12: Oven dry(Agar plate vs oatmeal broth) graph.[8] *p<0.05; Student t-test, two tailed & unpaired, Agar plate vs. Oatmeal broth from the same day sample

Fungi seeds collected from Agar seed plate produced more β-carotene

Oatmeal Broth Fig. 13: Blakeslea trispora Oatmeal broth,2024. [7]

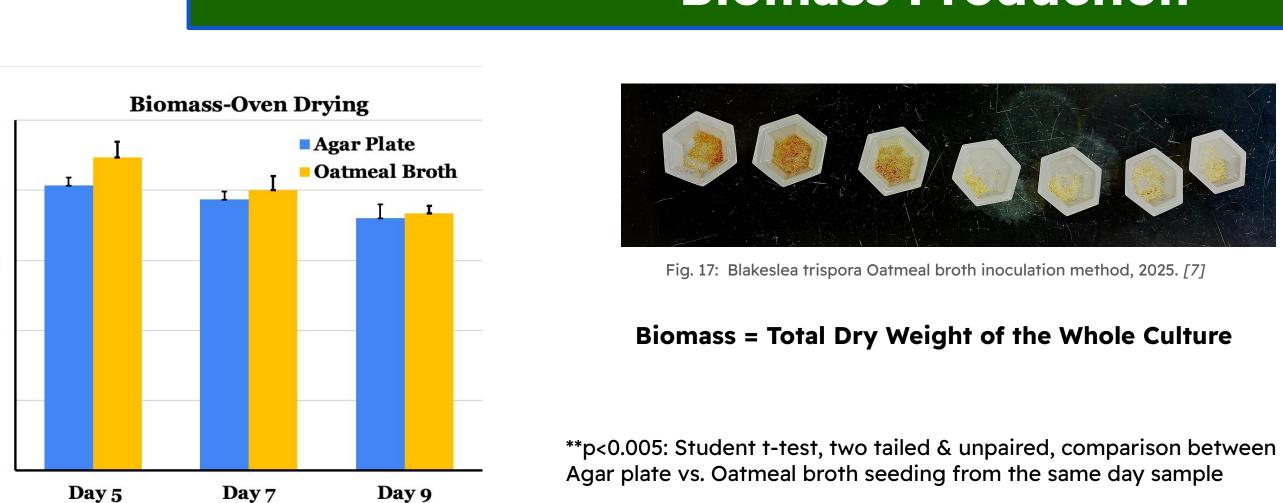
On Day 9

 $33.6 \pm 9.2 \, \mu g/g$

Day 7 Fig. 14: Oatmeal broth(Freeze dry vs Oven dry) graph.[8]

■ Freeze Drying

Oven Drying


Oatmeal Broth Seeding

■ Freeze Drying Oven Drying Fig. 15: Agar Plate(Freeze dry vs Oven dry) graph.[8]

*p<0.05; **p<0.005: Student t-test, two tailed & unpaired, comparison between freeze drying vs. oven drying from the same day sample

Freeze drying enhanced yield of β-carotene upto ~68 % versus oven drying

Biomass Production

There no significant difference in the total biomass produced

Biomass-Freeze Drying Agar Plate Oatmeal Broth Day 7 Day 5 Day 9

Fig. 18: Freeze dried biomass(Agar plate vs Oatmeal Broth) graph.[8]

Discussion

- Recommended daily dose of Vit-A for Pregnant women:

• 1 RAE = 10-12 μ g of dietary β -carotene.

- 770 RAE (Retinol Activity Equivalents). [9]
- 9240 μg of β-carotene needed as a diet.
- With 84.22 μg/g of β-carotene achieved with our fermentation, we need to consume of dry weight of around 109.7g powder per day.
- Other byproducts & their benefits: a) Lycopene (Antioxidant and Anti inflammatory) and b) Protein source.

Conclusions

- Tapioca serves as a viable energy source for *Blakeslea trispora*.
- 2. Spores collected from Agarose plate produced more β-carotene than spores from Oatmeal broth culture.
- 3. Freeze drying enhanced yield of β-carotene upto ~68 % versus oven
- 4. Addition of minerals is necessary for the production of β -carotene.
- The source of Tapioca, Cassava could be a viable source for producing Beta-carotene using Blakeslea trispora.

Fermenting Blakeslea trispora in Tapioca or cassava provides a viable option for creating a at-home sustainable dietary kit for promoting the supplementation of Vitamin A

Future Studies

- 1. Fermentation Additives
 - a. Use of edible oils in the culture [10]
 - b. Hydrogen Peroxide (through Soybean oil) [11]
- 2. Cassava as a energy source
- 3. Finger Millets as energy source
- 4. Optimization of Carbon to Nitrogen source on β -carotene yield 5. Subculturing- Sustainability
- 6. Heat Stability of the fermented product
- 7. Nutrient Analysis

References

- 1) Fig. 1: American Chemical Society. (n.d.). ChemIDPlus database. Retrieved September 28, 2025, from https://pubchem.ncbi.nlm.nih.gov/compound/445354#section=3D-Conformer
- 2) Fig. 2: American Chemical Society. (n.d.). *ChemIDPlus database*. Retrieved September 28, 2025, from https://pubchem.ncbi.nlm.nih.gov/compound/5280489#section=3D-Conformer
- 3) Fig. 3: (2025). <u>Cehjournal.orq</u>.
- https://archive.cehjournal.org/wp-content/uploads/2013/04/5636779879 e9c6dd650b o.jpg 4) Fig.4: During Pregnancy - Your Essential Pregnancy Must-Knows & To-Dos | Consult a Pregnancy/Maternity Doctor | Cloudnine Hospitals. (2024).
- Cloudninecare.com.https://www.cloudninecare.com/parent-corner/during-pregnancy 5) Fig. 5: Raiten, D. J., Darnton-Hill, I., Tanumihardjo, S. A., Suchdev, P. S., Udomkesmalee, E., Martinez, C., ... & Martinez, H. (2020). Perspective: Integration to implementation (I-to-I) and the micronutrient forum—Addressing the safety and effectiveness of vitamin A supplementation. Advances in Nutrition, 11(2), 185-199
- 6) Fig. 6: Prevalence of vitamin-A deficiency in pregnant women. (n.d.). Our World in Data. https://ourworldindata.org/grapher/prevalence-of-vitamin-a-deficiency-in-pregnant-women
- 7) Fig. 7-11, Fig.13 and 17: Images were taken by student, 2024-2025.
- 8) Fig. 12, 14-16, and Fig. 18: Graphs created by student using Microsoft Excel, 2025.
- 9) Office of Dietary Supplements Vitamin A and Carotenoids. (2025). Nih.gov. https://ods.od.nih.gov/factsheets/VitaminA%20-Consumer/
- 10) Mantzouridou, F., Tsimidou, M. Z., & Roukas, T. (2006). Performance of crude olive pomace oil and soybean oil during carotenoid production by Blakeslea trispora in submerged fermentation. Journal of Agricultural and Food Chemistry, 54(7), 2575-2581. https://doi.org/10.1021/jf0526339
- 11) Wang, H.-B., Luo, J., Huang, X.-Y., Lu, M.-B., & Yu, L.-J. (2014). Oxidative stress response of Blakeslea trispora induced by H2O2 during β-carotene biosynthesis. Journal of Industrial Microbiology & Biotechnology, 41(3), 555-561. https://doi.org/10.1007/s10295-013-1392-1

Goal: 2-3

weight