Conclusion

Overall, the predictive models for solar and wind energy
- demonstrated substantial promise, with the solar model
ys |S achieving a mean absolute error (MAE) of about 10,000
MWh—below 39% of the average daily solar
output—and the wind model at roughly 17,200 MWh
(~53.6% of average daily wind production). While
wind'’s higher error margin reflects inherent volatility, both
P rOCEd u re models offer valuable insights for daily planning by
enabling grid operators to anticipate fluctuations more
accurately than less sophisticated estimates. Beyond
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California often guesses wrong about how much solar
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retrain and update as conditions change 2. Data Consolidation: Using Python, the datasets were merged into a single table where each row represented one : .
- : . . . . : . can avert up to 10,000 MWh of fossil-fueled generation
day. This ensured that weather observations were directly matched with the corresponding day’'s energy generation. oer day—equivalent to about 15% of California’s daily
3. Exploratory Data Ana.IyS|s (EDA): Rglatlonshlps bgtween pr.edlctors and.ener.gy output were wsuah;ed using scat.ter energy production—resulting in roughly 9,100 metric
AbStra ct plots. A global F-test confirmed the significance of predictors, while variance inflation factor (VIF) analysis and correlation tons of CO: emissions avoided each day (or 2.35 million
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SP ‘?Jec ad(;j Iestse]? © S?ue by d?ole oP dg " 5. Model Development: Initial models were created using Ordinary Least Squares (OLS). Weighted Least Squares estimated $4.2 billion in annual energy losses tied to
regre§5|on MOGEIS 1o orecas .renewa. € pro uction, (WLS) was later applied to improve robustness against heteroscedasticity. Model accuracy was assessed with R?, overproduction and fossil fuel reliance. In short, these
focusing on solar and wind, using California weather adjusted R2, residual standard error (RSE), mean absolute error (MAE), and ratio metrics. findings highlight how robust forecasting not only cuts
_a”d generation data from 2022-2023. Key p.reSjlctors 6. Model Refinement: The models were iteratively improved by minimizing MAE and RSE while ensuring assumptions emissions but also lessens costs for the state’s
included temperature, cloud cover, solar radiation, of linearity, independence, normality, and equal variance were satisfied. energy sector.
wind speed, and day length. 7. Final Evaluation: The optimized WLS model was selected for its balance of accuracy, generalizability, and complexity. —
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The Problem and The Solution
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Key: 1, 2, 3, and 6 were made in google slides. 4, 5, 7, and 8 were made in Google Colab through matplotlib.
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