READING THE BRAIN:

USING MRIS FOR EARLY DETECTION OF DYSLEXIA

INTRODUCTION

What is Dyslexia?

- **Dyslexia** is a **learning disorder** characterized by difficulty **reading**
- 1in 10 Americans is **dyslexic** (to varying degrees) [5]
- **Early detection** and intervention can **reduce** the percentage of children reading below average level by 33% [7]

Project Origin

Characters in Percy Jackson (childhood favorite book) had dyslexia

Wanted to help dyslexic children get the right support to

learn to read

Project Origin

Interested in neuroscience and AI, learned more from summer classes

Realized I could apply that knowledge to this problem

Engineering Goal

Build AI model for dyslexia detection in children before reading age

Use 3D anatomical MRIs for earlier detection

CURRENT METHODS

Standardized test Background Information

Oral Language Skills

Word Recognition

Spelling

Reading Comprehension

Vocabulary Knowledge

Neural imaging

Functional MRIs (fMRIs): ML model only achieves 72.7%

accuracy and 60% precision [13]

Anatomical MRIs:

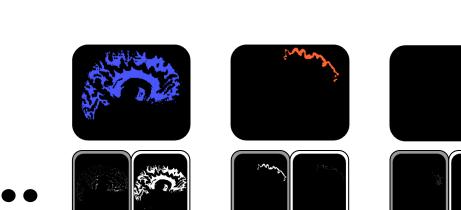
- Volume of pars triangularis gray matter - biomarker of dyslexia
- Found by expert humans manually inspecting brain scans

Limitations

- All parts of the brain are not fully explored
- Both fMRI and standardized tests require active participation
- Child must be of **reading age** for **both methods**

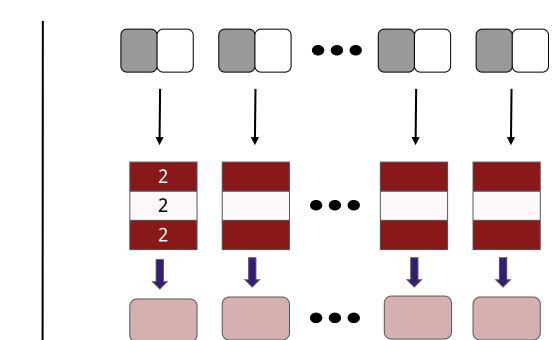
METHODS AND RESULTS

SINGLE-TIER



Part 132

Trial 2: Single input models



Graphic created by finalist using Mango Viewer and Google Slides, 2025

Trial 1: Multi-input model

Input Layer (264 feat.)

Hidden Layers (2 layers)

Output Layer (2 probs.)

Final prediction

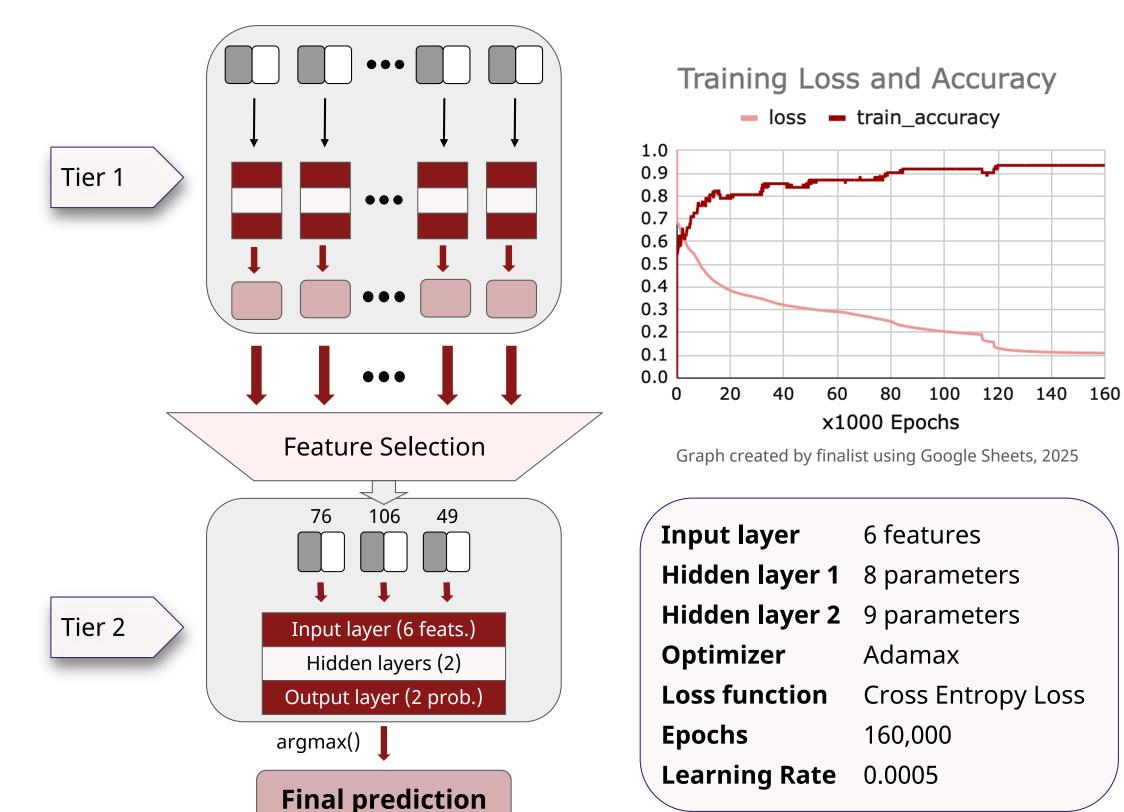
 Too many features Low accuracy (56.25%) Trial 2: Single input model Too little data per model Higher accuracy (81.25%) **Key insight**

Trial 1: Multi-input model

Best single input models >> one multiple input model Graph created by finalist using Google Sheets, 2025

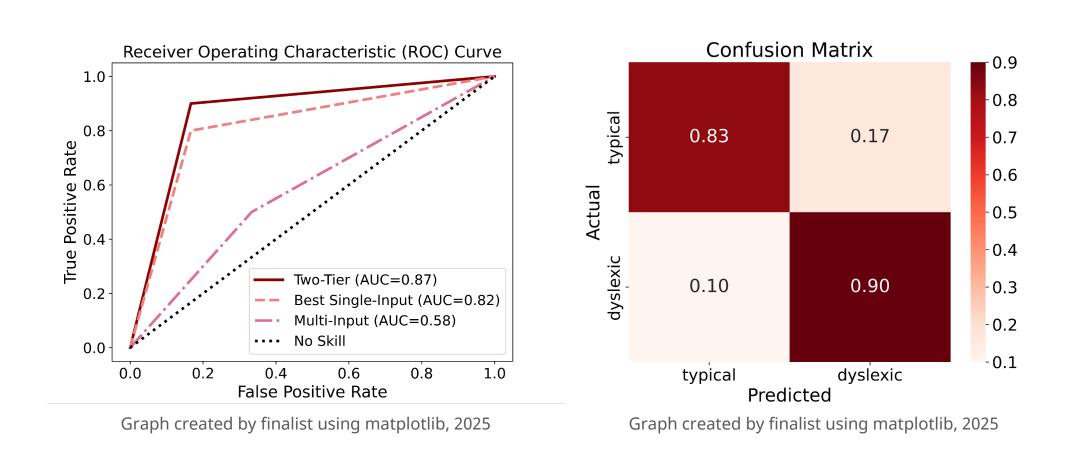
Brain Part Analysis							
Part #	Part name	Primary function	Train acc.	Test acc.	Train x test		
76	Left medial orbital gyrus	Decision-making, motivation	0.758	0.813	0.616		
106	Left posterior orbital gyrus	Emotional response and reward	0.694	0.813	0.564		
49	Right entorhinal area	Memory, spatial navigation	0.806	0.688	0.554		
60	Left inferior occipital gyrus	Visual processing	0.742	0.688	0.510		
130	Pars triangularis	Language processing and translation	0.710	0.688	0.488		
Table created by finalist using Google Slides, 2025							

TWO-TIER



Final Results				
Metric	Definition	Value		
Precision (%)	True positives / (True positives + False positives)	90.0%		
Recall (%)	True positives / (True positives + False negatives)	90.0%		
Accuracy (%)	(True positives + True negatives) / All samples	87.5%		
F1 Score	(2 * precision * recall) / (precision + recall)	0.900		
AUC	Area under curve of true positive rate vs. false positive rate	0.870		
	Table created by finalist using Google Slides, 2025			

Graphic created by finalist using Google Slides, 2025



DISCUSSION

Selected features

Left posterior orbital gyrus, left medial orbital gyrus

- Reward and emotion • Differences in gyri leads to
- difficulties associated with learning to read

Right entorhinal area

- Better memory and spatial navigation
- Makes up for left hemisphere reading networks

Pars triangularis

- Established biomarker (top 5) Other parts found to be better
- indicators

Applications

Future Work

It?. WrightsLaw.

Analysis

AUC improvements: 5% over best single input

Two tier model

input model

all metrics

Individual parts had too

worked best

Comparison

6% accuracy improvement over best model, 29% over multisingle input model

models

15% accuracy improvement over current best fMRI

effective in improving

Challenges

few voxels for tissue classifier

Classifying entire brain and overlapping with segmentation data

Limitations

imited publicly available training data

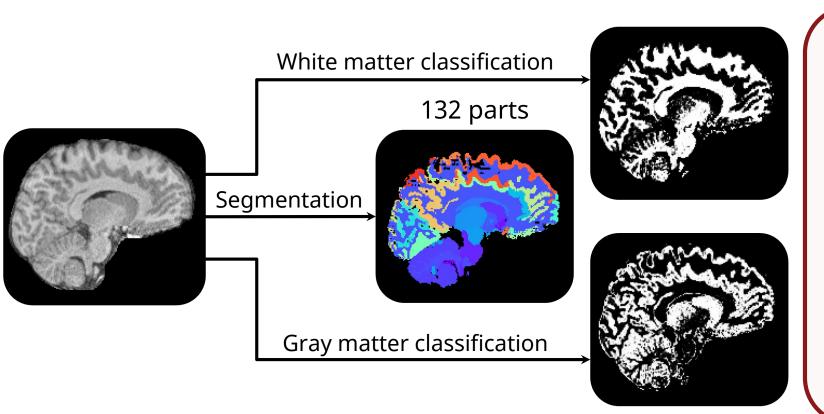
Limited MRI scans of young children's brains (dyslexic and normal)

CONCLUSION

- Two tier model detects dyslexia with 87.5% accuracy in MRI scans of children's brains Result • 15% better accuracy than best current fMRI AI eliminates manual inspection of complex brain scans, providing quick results • More accurate than current best models Novelty Applicable to children before their reading
 - Incorporate into annual physical exam (ages Possibly earlier, when family history exists
 - Work with doctors and educators to get early intervention
 - Work with dyslexia centers to acquire more training data
 - Look into training different types of models (in addition to multi-layer perceptrons)

PREPROCESSING

Datasets Age # Typical # Dyslexic Data source (study) Reading-related functional activity in children with isolated spelling deficits and dyslexia [1] Atypical Hemispheric Re-Organization of the Reading Network in High-Functioning Adults with Dyslexia: Evidence from Representational Similarity Analysis [2]



model for **3D brain** segmentation [12]

HMRF (Hidden Markov Random Field) **tissue** classifier from dipy library in python

Pretrained MONAI

132 parts identified

Graphic created by finalist using Mango Viewer and Google Slides, 2025

MODEL CODE SNIPPETS

#create model class class Model(nn.Module):

def __init__(self, in_features=6, h1=8, h2=9, out_features=2):

super().__init__() self.fc1 = nn.Linear(in_features, h1)

self.fc2 = nn.Linear(h1, h2) self.out = nn.Linear(h2, out_features)

def forward(self, x): x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))

 $x = self_out(x)$

return x

#train test split

interesting_columns = $[x for x in list(df.columns.values) if (x in ["Part49_gm",$ "Part49_wm", "Part76_gm", "Part76_wm", "Part106_gm", "Part106_wm", "out_class"])] df = df[interesting_columns]

#convert dataframe to numpy array X = df.drop(['out_class'], axis=1).values y = df['out_class'].values

torch.manual_seed(32) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

#instantiate model

in_feat=X_train.shape[1] model = Model(in_features=in_feat)

#set criterion to measure loss criterion = nn.CrossEntropyLoss() #choose adamax optimizer (good with noisy data) optimizer = torch.optim.Adamax(model.parameters(), lr=0.0005)

#train model epochs = 160000losses = [] for i in range(epochs): y_pred = model.forward(X_train)

loss = criterion(y_pred, y_train) #print(loss) losses.append(loss.detach().numpy())

#back propagation optimizer.zero_grad() loss.backward() optimizer.step()

#save model torch.save(model.state_dict(), 'model_49_76_106_best.pt')

REFERENCES

- . Banfi, C., Koschutnig, K., Moll, K., Schulte-Körne, G., Fink, A., & Landerl, K. (2020). Reading-related functional activity in children with isolated spelling deficits and dyslexia. Language, Cognition and Neuroscience, 1–19. https://doi.org/10.1080/23273798.2020.1859569
- 2. Cavalli, E., Valérie Chanoine, Tan, Y., Anton, J.-L., Giordano, B. L., Pegado, F., & Ziegler, J. C. (2024). Atypical hemispheric re-organization of the reading network in high-functioning adults with dyslexia: Evidence from representational similarity analysis. *Imaging Neuroscience*, 2, 1–23. https://doi.org/10.1162/imag_a_00070 3. Eckert, M. A. (2003). Anatomical correlates of dyslexia: frontal and cerebellar findings. *Brain*, *126*(2), 482–494.
- https://doi.org/10.1093/brain/awg026 4. Ferrer, E., Shaywitz, B. A., Holahan, J. M., Marchione, K. E., Michaels, R., & Shaywitz, S. E. (2015). Achievement Gap in Reading Is Present as Early as First Grade and Persists through Adolescence. The Journal of Pediatrics, 167(5), 1121-
- 1125.e2. https://doi.org/10.1016/j.jpeds.2015.07.045 5. International Dyslexia Association. (2016). *Dyslexia basics*. Dyslexiaida.org; International Dyslexia Association.
- https://dyslexiaida.org/dyslexia-basics/ 6. Lovett, M. W., Frijters, J. C., Wolf, M., Steinbach, K. A., Sevcik, R. A., & Morris, R. D. (2017). Early intervention for children at risk for reading disabilities: The impact of grade at intervention and individual differences on intervention
- outcomes. Journal of Educational Psychology, 109(7), 889–914. https://doi.org/10.1037/edu0000181 7. Lyon, R. (n.d.). Reading Disabilities: Why Do Some Children Have Difficulty Learning to Read? What Can Be Done About
- 8. Raschle, N. M., Chang, M., & Gaab, N. (2011). Structural brain alterations associated with dyslexia predate reading onset. *NeuroImage*, *57*(3), 742–749. https://doi.org/10.1016/j.neuroimage.2010.09.055 9. Schulte-Körne, G. (2010). The Prevention, Diagnosis, and Treatment of Dyslexia. *Deutsches Aerzteblatt Online*, 107(41).
- https://doi.org/10.3238/arztebl.2010.0718 10. The Importance of Early Detection of Dyslexia | UT Permian Basin Online. (2020, November 3). Online.utpb.edu. https://online.utpb.edu/about-us/articles/education/the-importance-of-early-detection-of-dyslexia/

11. Werth, R. (2019). What causes dyslexia? Identifying the causes and effective compensatory therapy. *Restorative*

- Neurology and Neuroscience, 37(6), 591–608. https://doi.org/10.3233/rnn-190939 12. Xin, et al. Characterizing Renal Structures with 3D Block Aggregate Transformers. arXiv preprint arXiv:2203.02430
- 13. Zahia, S., Garcia-Zapirain, B., Saralegui, I., & Fernandez-Ruanova, B. (2020). Dyslexia detection using 3D convolutional neural networks and functional magnetic resonance imaging. Computer Methods and Programs in Biomedicine, 197, 105726. https://doi.org/10.1016/j.cmpb.2020.105726
- (2022). https://arxiv.org/pdf/2203.02430.pdf