Career Bias in AlData

Behavioral and Social Sciences, Junior division

Problem

- Women represent only 35% of STEM graduates worldwide—a figure unchanged for more than a decade (UNESCO). This persistent gap is fueled by stereotypes about who is "naturally suited" for STEM (Ertl et al.; Musso et al.)
- Studies show that adolescents' aspirations are shaped by representation: when girls see diverse role models, their sense of belonging in STEM increases (Leslie et al.; Cheryan et al., 2015; Master).
- Extending prior work with a larger dataset (Latorre Ruiz et al.; García-Ull & Melero-Lázaro), this study asks:
- Do Al-generated images reinforce gender bias in STEM professions?

Methodology

Hypothesis: If an Al algorithm is biased, then there will be a higher representation of men in STEM careers than women. In addition, each algorithm will generate a lower percentage of women than known Bureau of Labor of Statistics (BLS) demographics.

Variables:

- **Dependent:** Ratio of men to women images
- Independent: Al-Generations Tools / Al Algorithm
- Control: Career prompts of STEM professions

Data:

- AI-Generations Tools: Shutterstock, Canva, Dall-E, and Midjourney
- 20 groups of 100 images by AI-Generations Tools and prompt, totaling 2,000 images of Stem professional
- 5 prompts based on BLS top STEM careers.
- Images coded as Woman, Man, Men, Uknown, No human, or Both.

Steps:

- 1. Create accounts on Al Image Generator platforms
- 2. Copy the exact profession title (actuary, data scientist, information security analyst, operations research analyst, and computer and information research scientist) into the AI prompt to provide an image.
- 3. Repeat prompt quest 100 times (Figure 1 and 2).
- 4. classify image in Excel (Figure 3 and 4)
- 5. Quality Control Check

Analysis and Results

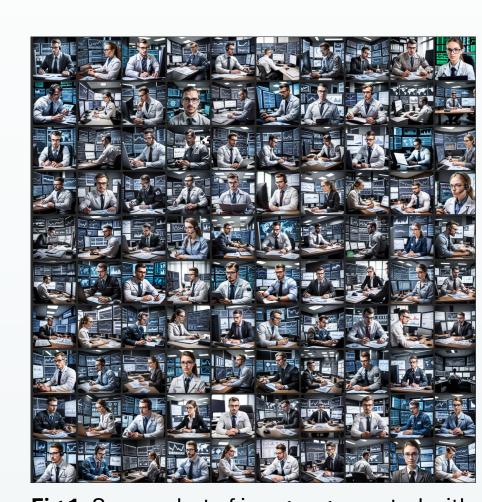


Fig 1. Screenshot of images generated with Dall-E 3 using the prompt 'operation research analyst,' assisted by the

Fig 2. Screenshot of images generated with Dall-E 3 using the prompt 'operation research analyst,' assisted by the

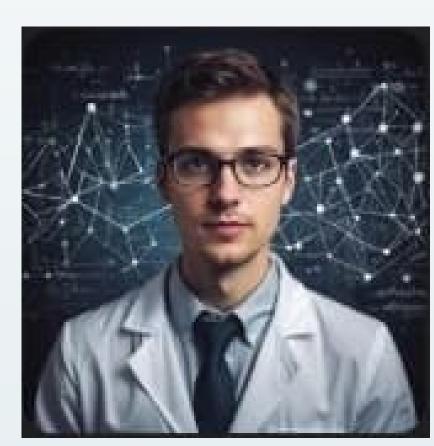
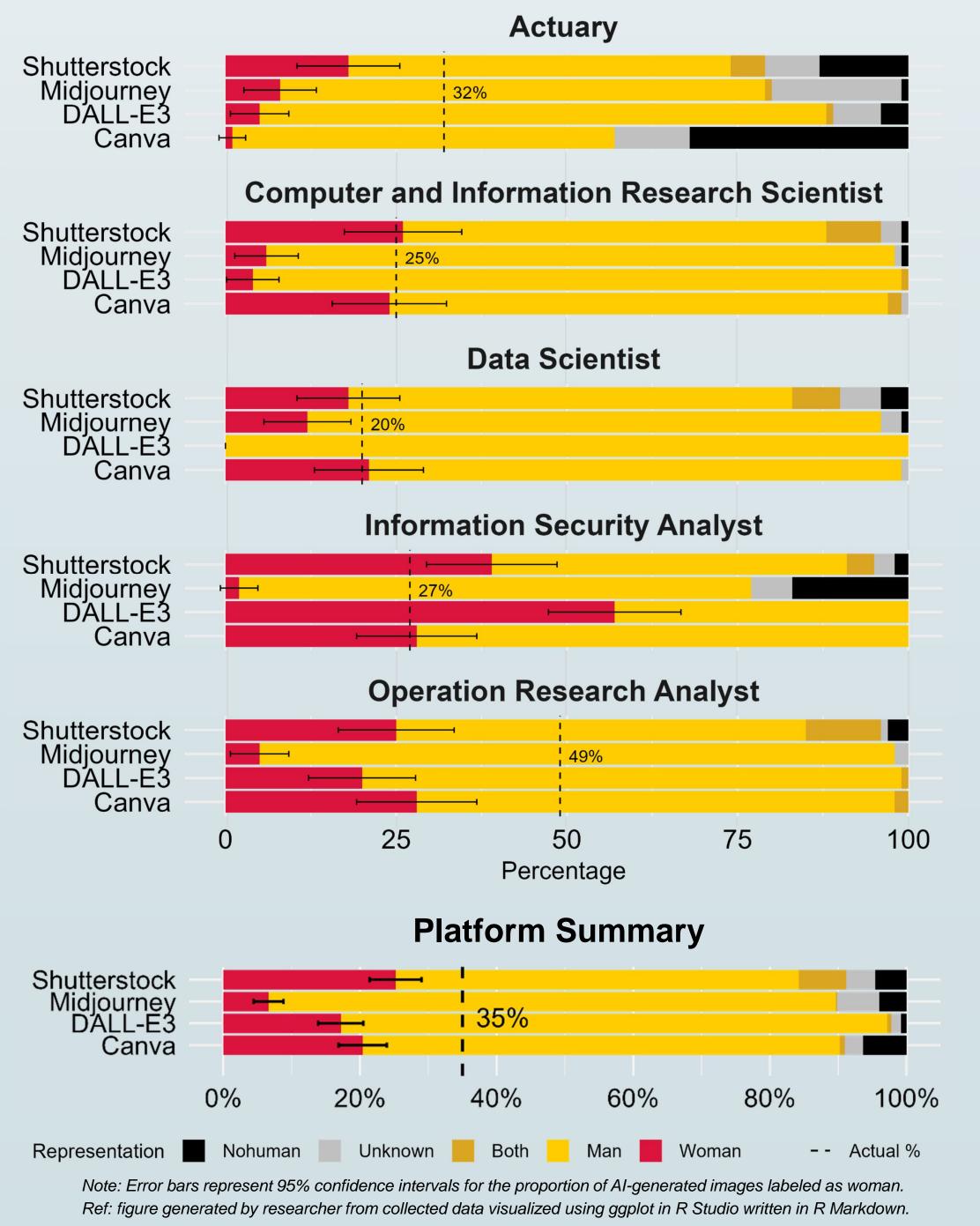



Fig 3. Screenshot of male image generated with Dall-E 3 using the prompt 'Data scientist,' assisted by the

Fig 4. Screenshot of female image generated with Dall-E 3 using the prompt 'operation research analyst,' assisted by the

Fig. 5: Gender Representation of Al-Generated STEM Professions

				<u> </u>			
					No		
Al Platform	Woman	Man	Men	Unk.	human	Both	Total
Actuary (32%)							
Shutterstock	18 (24.3%)**	56		8	13	5	100
Midjourney	8 (10.1%)**	71		19	1	1	100
DALL-E3	5 (5.7%)**	83		7	4	1	100
Canva	1 (1.8%)**	56		11	32		100
Computer and Information Research Scientist (25%)							
Shutterstock	26 (29.5%)	62		3	1	8	100
Midjourney	6 (6.1%)**	92		1	1		100
DALL-E3	4 (4%)**	87	8			1	100
Canva	24 (24.7%)	73		1		2	100
Data Scientist (20%)							
Shutterstock	18 (21.7%)	65	,	6	4	7	100
Midjourney	12 (12.5%)**	84		3	1		100
DALL-E3	(0%)**	100					100
Canva	21 (21.2%)	77	1	1			100
Information Security Analyst (27%)							
Shutterstock	39 (42.9%)	52		3	2	4	100
Midjourney	2 (2.6%)**	75		6	17		100
DALL-E3	57 (57%)	43					100
Canva	28 (28%)	70	2				100
Operation Research Analyst (49%)							
Shutterstock	25 (29.4%)**	60		1	3	11	100
Midjourney	5 (5.1%)**	93		2			100
DALL-E3	20 (20.2%)**	79				1	100
Canva	28 (28.6%)**	68	2			2	100
Platform Summary (35%)							
Shutterstock	126 (29.9/25.2%)**	295		21	23	35	500
Midjourney	33 (7.4/6.6%)**	415		31	20	1	500
DALL-E3	86 (17.7/17.2%)**	392	8	7	4	3	500
Canva	102 (22.6/20.4%)**	344	5	13	32	4	500
Total	347 (19.2/17.4%)**	1,446	13	72	79	43	2,000

Table 1 - Gender Classification of Al Generated Images by Platform

** Indicates the percentage is significantly lower than the actual percentage at a significance level of $\alpha = 0.05$ Noman/Women column is (% of women to total men and women / % of women to total images

Discussion:

- Woman column: % of women relative to total men + women.
- **Confidence intervals**: Calculated as $\sqrt{p(1-p)/n}$, where p = 1proportion and n = number of observations.
- **Key feature**: Red bar segment + confidence interval (left) compared to the actual % of women (vertical dashed line in Figure 4).
- **Table 1 highlights**: Professions falling below the actual average, based on a **test of proportion** against BLS-reported values.

Findings:

- Overall: 73% men (1,446+13); 17.4 % women (347) of total significantly lower than BLS data (p < .05).
- By profession: 2 careers had no Al-Generations Tools match with actual percentages; 2 others were **mixed but ≤ actual** rates. Only Information Security Analyst met/exceeded actual representation → overall **bias toward men** in STEM.
- AI-Generations Tools: Best = Shutterstock (paid), next = Canva, worst = Midjourney & DALL-E 3. Access to lessbiased AI requires a **subscription**, raising accessibility concerns.
- "No Human" bias: When images coded as "No Human" women's representation dropped sharply, reinforcing male dominance.

Conclusion

- Findings: Across 2,000 STEM images from four Al platforms, men appeared in 81% of cases, with a ratio of 1,459 man/men, 347 women, 1806 total.
- Bias Evidence: These ratios were consistently lower than real-world labor statistics, showing systematic underrepresentation of women in STEM.
- Accessibility Issue: The least biased AI-Generations Tools (Shutterstock) requires a paid subscription, limiting accessibility.
- Takeaway: When AI repeatedly depicts scientists as male, it sends a message about who belongs in science, closing the door to future scientists. As UNESCO emphasizes, achieving gender parity in STEM is not only a matter of social justice but also an economic imperative.

What's Next

Educators: Audit AI tools for gender bias; use AI-Generations Tools comparisons; integrate biasawareness in class.

Al Companies: Publish bias metrics, enable user reporting, diversify training data.

Policy Makers: Require bias disclosure labels; prioritize low-bias platforms in funding.

Research Expansion:

- Replication package for classrooms/researchers.
- Survey students on bias awareness and belonging.
- Test prompt engineering ("diverse scientists").
- Build automated program to analyze images at scale.

Bibliography

Bureau of Labor Statistics. U.S. Bureau of Labor Statistics, www.bls.gov.

Cheryan, Sapna, et al. "Cultural Stereotypes as Gatekeepers: Increasing Girls' Interest in Computer Science and Engineering by Diversifying Stereotypes." Frontiers in Psychology, vol. 6, 2015, Article 49,

https://doi.org/10.3389/fpsyg.2015.00049. Ertl, H., et al. "The Impact of Gender Stereotypes on the Self-Concept of Female Students in STEM Subjects with an Under-Representation of Females." Frontiers in Psychology, vol. 8, 2017, Article 703,

https://doi.org/10.3389/fpsyg.2017.00703. García-Ull, Francisco-José and Mónica Melero-Lázaro. "Gender stereotypes in Al-generated images." Profesional de la

información 32.5 (2023): 1699-2407. Latorre Ruiz, Enrique, et al. "Gender Bias in Artificial Intelligence." Gender in Al and Robotics, vol. 235, Springer

International Publishing AG, 2023, pp. 61–75, https://doi.org/10.1007/978-3-031-21606-0_4. Leslie, Sarah-Jane, et al. "Expectations of Brilliance Underlie Gender Distributions Across Academic Disciplines." Science, vol. 347, no. 6219, 2015, pp. 262-265, https://doi.org/10.1126/science.1261375.

Master, Allison, et al. "Computing Whether She Belongs: Stereotypes Undermine Girls' Interest and Sense of Belonging in Computer Science." Journal of Educational Psychology, vol. 108, no. 3, 2016, pp. 324-339,

Musso, P., et al. "STEM-Gender Stereotypes: Associations with School Empowerment and School Engagement Among Italian and Nigerian Adolescents." Frontiers in Psychology, vol. 13, 2022, Article 879178, https://doi.org/10.3389/fpsyg.2022.879178.

United Nations Educational, Scientific and Cultural Organization (UNESCO). 2024 Gender Report: Technology on Her Terms. Global Education Monitoring Report, 25 Apr. 2024, https://www.unesco.org/gem-report/en/publication/2024-

- United States Department of Labor. "Fastest Growing Occupations." U.S. Bureau of Labor Statistics,
- www.bls.gov/ooh/fastest-growing.htm.
- United States, Department of Education. Artificial Intelligence and the Future of Teaching and Learning. 2025, https://www.ed.gov/sites/ed/files/documents/ai-report/ai-report.pdf.