Introduction/Background

Increased Awareness Post-COVID-19

- Since COVID-19, awareness around air pollution has increased drastically.
- A recent Boston Consulting Group survey of around 3,000 people from 8 different countries showed that 70% of people were more aware of pollution since COVID-19.
- Furthermore, 75% said that environmental issues were just as dangerous as health issues.
- This project identifies various PM_{2.5} pollutants in day-to-day activities and analyzes their effects on indoor air quality.
- Poor indoor air quality affects not only the health of many but also the economy of a multitude of countries.
- In the United States, because of poor indoor air quality, adults in the United States miss around 14.5 million workdays due to asthma. Due to the IAQ (Indoor Air Quality) being 3-7% higher, productivity has been shown to lower by 33%.
- **Economic loss: \$168 billion annually.**

PM_{2.5} – What it is & Why it's dangerous

- Fine particulate matter (≤2.5 microns in diameter) is 20x smaller than a human hair.
- It can be inhaled deep into the lungs, causing respiratory diseases.
- Linked to influenza.

< 10 μm **Indoor vs. Outdoor Air Pollution**

- Indoor air can be 2-5 times more polluted than outdoor air.
- 90% of time spent indoors (on average, for Americans).
- Household air pollution caused 3.2 million deaths in 2021, including 237,000 children under age 5.

Experimental Details

Experiment Question

How do different sources of PM_{2.5} pollution affect indoor air quality?

Experiment Hypothesis

If I measure PM_{2.5} levels in the air before and after introducing various pollution sources for 50 minutes, I predict that the air fryer will cause the greatest increase in PM_{2.5} levels.

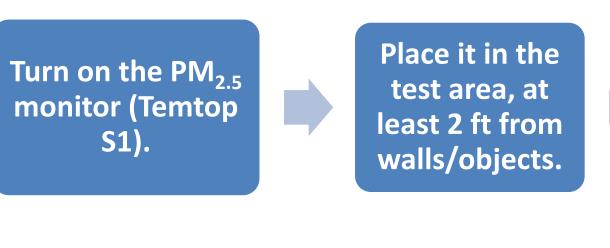
Experimental Variables

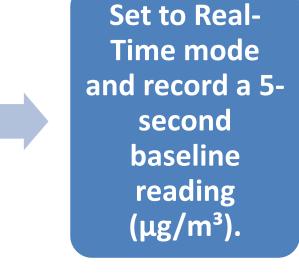
Dependent: The PM_{2.5} levels in the indoor air. Independent: Various sources of PM_{2.5} pollutants. Controlled: 1. The type of $PM_{2.5}$ detector.

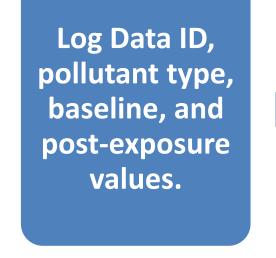
- 2. The amount of time the pollutant is exposed to the air.
- 3. Room the PM_{2.5} is measured in.

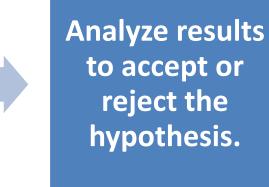
Materials:

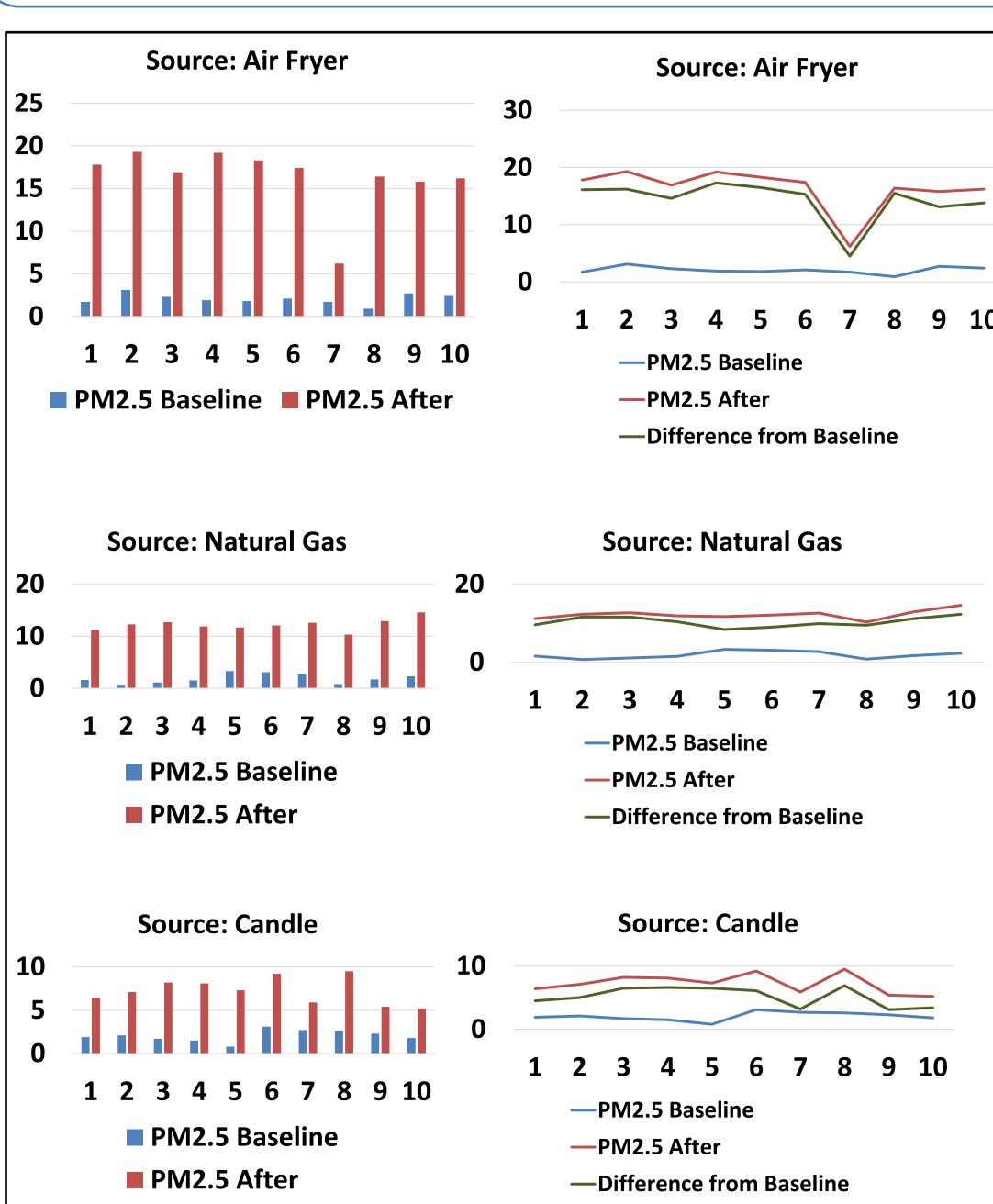
1.Temtop S1 PM_{2.5} AQI monitor

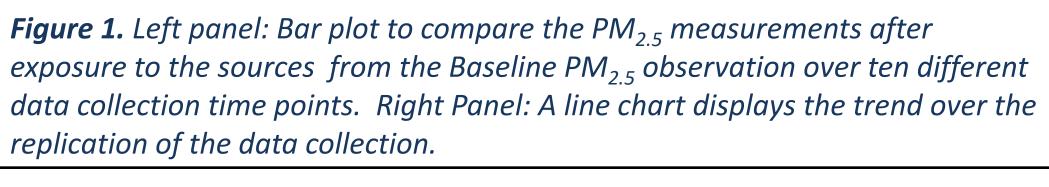

- 2. Timer
- 3. PM_{2.5} pollutant Sources: Natural Gas **Candles**

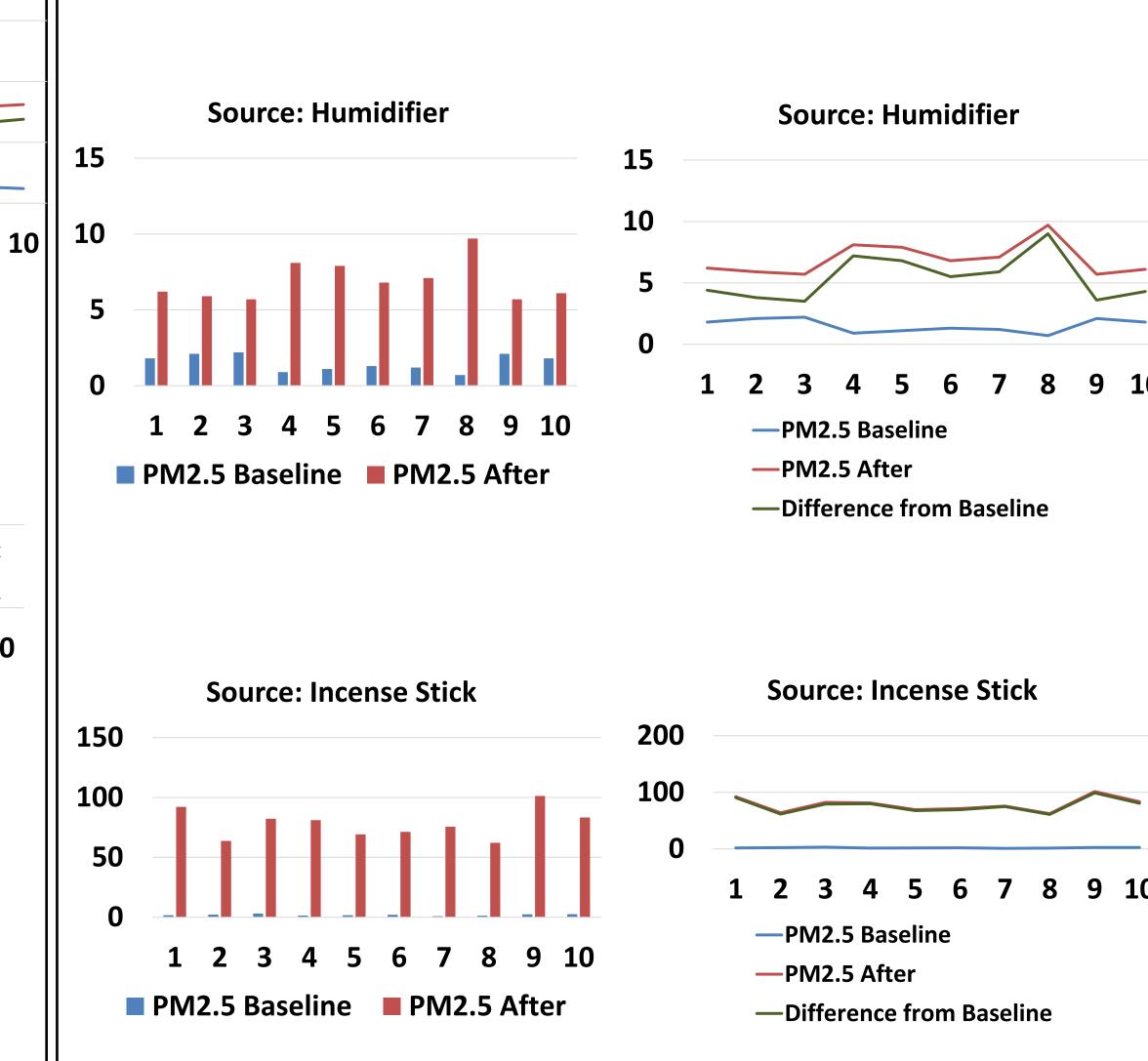



Experimental Procedures









Experimental Results & Data Analysis

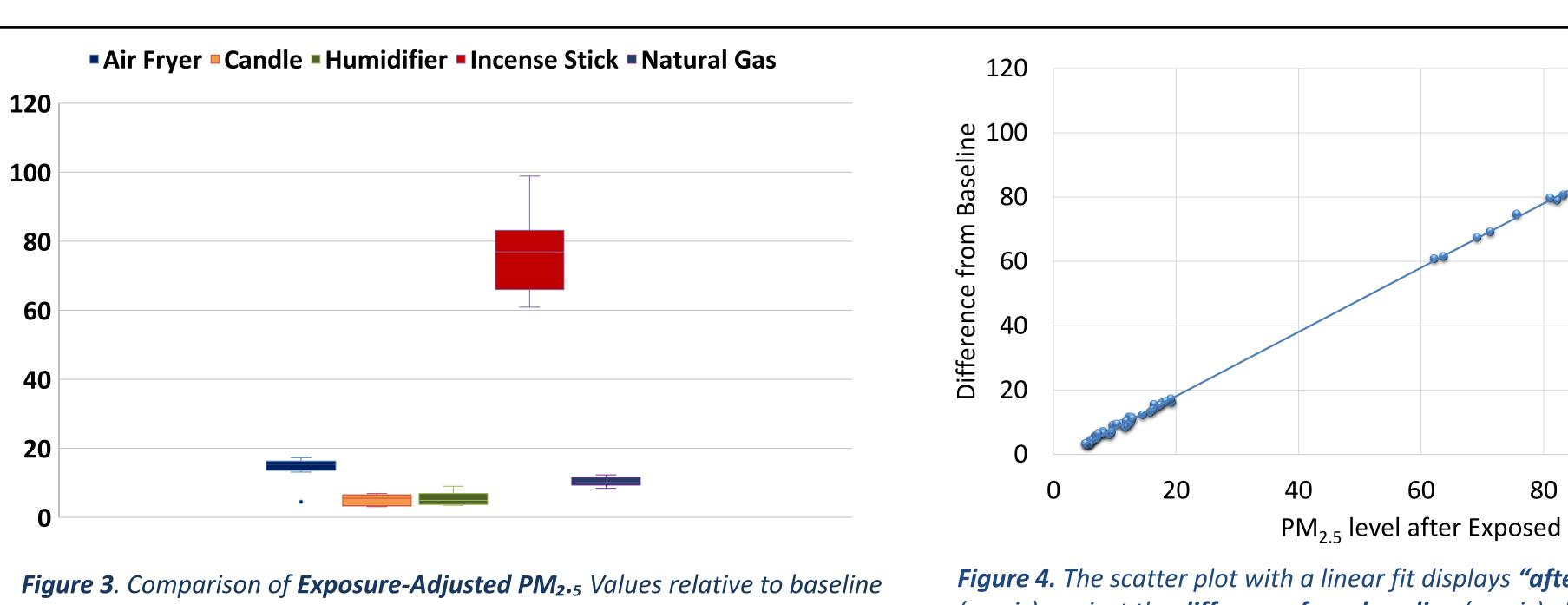

- In this study, I evaluated the impact of five distinct pollutant sources on PM_{2.5} concentrations.
- To ensure accurate measurement, I first established a baseline PM_{2.5} level for each source under controlled conditions. Subsequently, each pollutant source was introduced individually, and changes in PM_{2.5} levels were monitored and recorded.
- This systematic approach allowed for a clear assessment of the effect each pollutant had on ambient PM_{2.5} concentrations.

Figure 2. Left panel: Bar plot to compare the PM_{25} measurements after exposure to the sources from the Baseline $PM_{2.5}$ observation over ten different data collection time points. Right Panel: A line chart displays the trend over the replication of the data collection.

across all sources. A box-and-whisker plot is used to provide a clearer view of the distribution of values for each pollutant source after accounting for baseline differences.

Figure 4. The scatter plot with a linear fit displays "after-exposure" PM2.5 values (x-axis) against the **difference from baseline** (y-axis). Because baseline PM_{2.5} is essentially constant, the strong correlation you observe between the difference and the "after" value is expected and valid.

	Sources	Air Fryer	Candle	Humidifier	Incense Stick	Natural Gas
	PM _{2.5}	(N=10)	(N=10)	(N=10)	(N=10)	(N=10)
	[min, max]	[4.50, 17.30]	[3.10, 6.90]	[3.50, 9.00]	[60.90, 98.90]	[8.40, 12.30]
	[mean, SD]	[14.29, 3.67]	[5.18, 1.54]	[5.40, 1.83]	[76.27, 12.19]	[10.35, 1.28]
	Median	15.40 [14.00,	5.55 [3.67,	4.95 [3.92,	76.90 [67.92,	10.15 [9.53,
	[Q1, Q3]	16.17]	6.50]	6.57]	80.45]	11.50]
	IQR	2.17	2.83	2.65	12.53	1.97

Table 1. Summary Statistics for each pollutant source for the PM_{2.5} value difference between baseline and after-exposed values. In the Table, min = minimum value of the pollutant. max = maximum value of the pollutant. mean = average value of the pollutant. SD = standard deviation of the value of the pollutant. Median = median value of the pollutant. Q1 = first quartile value of the pollutant. Q3 = third quartile value of the pollutant. Interquartile Range (IQR) = (Q3 - Q1) value of the pollutant.

Further Statistical Analysis: A Deeper Comparison Across Sources:

To determine whether changes in $PM_{2.5}$ levels differed across pollutant sources, a one-way Analysis of Variance (ANOVA) was performed using the differences between baseline and post-exposure values (Table 1).

Hypothesis Test:

Table 2A: SUMMARY Table

Null Hypothesis (H_0): The mean change in $PM_{2.5}$ is the same for all five pollutant

Alternative Hypothesis (H_a): At least one pollutant source produces a significantly different mean change in PM_{2.5}.

Groups	Count	Sum	Average	Variance			
Air Fryer	10	142.9	14.29	13.43			
Humidifier	10	54	5.4	3.34			
Natural Gas	10	103.5	10.35	1.64			
Candle	10	51.8	5.18	2.36			
Incense Stick	10	762.7	76.27	148.64			
Table 2B: ANOV	'A Table						
DF (degrees							

Source of	SS (sum of	of	MS (Mean			
Variation	squares)	freedom)	square)	F-value	P-value	F critical
Between Groups	36984.28	4	9246.07	272.88	<0.000 <mark>1</mark>	2.58
Within Groups	1524.731	45	33.88			
Total	38509.01	49				

Conclusion: Based on the F-distribution, statistical significance is determined by the p-value. If F > F-critical, the null hypothesis (H_0) is rejected.

In this analysis, the ANOVA p-value was very small, so we reject H₀ and conclude that at least one pollutant source produced a significantly different change in PM_{2.5}

Conclusion & Recommendation

- This experiment showed that common indoor activities (statistically) significantly elevate PM_{2.5} levels, impacting air quality and health.
- Incense burning had the highest increase (mean: 78.20 μg/m³, IQR: 13.3 μg/m³), posing potential health risks and leading to the rejection of our hypothesis. The air fryer also raised PM_{2.5} levels (mean: 16.35 μ g/m³) but with lower variability.
- Candle and humidifier use had moderate effects (mean: 6.92–7.23 µg/m³), while natural gas showed the most stable levels (IQR: $0.93 \mu g/m^3$).
- Overall, incense and air fryers had the greatest impact, emphasizing the need for proper ventilation and air quality monitoring.

Future Research:

- Test a wider range of household sources (e.g., gas stoves, toasters).
- Study long-term health impacts of repeated indoor PM_{2.5} exposure on cognitive, respiratory and cardiac function.
- Study the chemical composition of PM_{2.5} pollutants.

Industry & Policy:

- Develop guidelines for household products that raise PM_{2.5} levels.
- Improve designs of air fryers, candles, and incense to cut emissions.
- Promote awareness and encourage air purifiers or better ventilation. Public awareness campaigns should educate consumers on the risks of these sources, promoting the use of enhanced ventilation to reduce exposure.

Citations:

L. American Lung Association. (n.d.). Clean air indoors. Lung.org. https://www.lung.org/clean-air/indoor-air.

4. Fowler, D., Brimblecombe, P., Burrows, J., Heal, M. R., Grennfelt, P., Stevenson, D. S., Jowett, A., Nemitz, E., Coyle, M., Liu, X., Chang,

8. U.S. Environmental Protection Agency. (2019, January 18). Introduction to indoor air quality. https://www.epa.gov/indoor-ai 9. Xing, Y. F., Xu, Y. H., Shi, M. H., & Lian, Y. X. (2016). The impact of PM2.5 on the human respiratory system. Journal of Thoracic

https://environmentalhealth.ucdavis.edu/airpollution/out-frying-pan-and-fire-gas-stove-toxicit https://www.vecteezy.com/png/52574909-incense stick-with-golden-stand-icon-or-agarbatti-illustration https://www.vecteezy.com/png/54484724-modernhumidifier-with-transparent-dome-and-orange-led-lig

Photo Credits:

with-the-digital-timer-on https://temtopus.com/products/temtop-s1-air-qua . Figures 1–4, Table 1 created by Archishman Dey using Microsoft Excel. 2025.

https://www.vecteezy.com/png/55061961-an-air-frye

Table 2A and 2B created by Archishman Dey from statistical analysis in Microsoft Excel, 2025.