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Figure 1: How 3D water transport is simplified to 2D diffusion (at 6 = 0°). _ o . .
1. Water transport simplified to diffusion-only.
2. ldentified erfc(x, t) model that fits water diffusion-only data.
3. Determined water diffusivity and its temperature dependence using data and model.
water reservoir chopsticks 4. Designed shape to speed up diffusion by 19% (with respect to control).
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Figure 2a: Experiment setup for 6 = 0°. (x) dx ot 0x Dax?- C(0, t) = C, (soaked water concentration) (x,1) > 2VDt i 6 Paber towel shaoe desi trol. Desien is 19% fast
\ Y Igure o: Faper towel snape design vs. CONntrol. vesign IS % faster.
(vaejf1957) The constraint was identical paper width for source and destination.
5) Waterline data and model 6) Extraction of diffusivity, D
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Figure 2c: Measuring

waterlines vs. time. Figure 4: Development of 2D analytical water diffusion model in 7 steps. Symbol Meaning Unit
Note in 5), C@waterline/Cs = 20% is obtained through weight C(x,t) Water concentration (along a 2D mesh) g/cm? Warm/cold colors mean
comparison — weight of a paper strip along y at waterline vs. that of D Water diffusivity along the 2D mesh cm?/sec high/low water
Figure 2b: Experiment for 6 = 0°. soaked paper. Weight of paper strip itself is negligible. F(x) or F(x.t) Water flux g/cm/sec concentration, respectively.
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Figure 3: Measured waterline data for different 0’s. : e e . : .
8 Figure 5: Left — extracted diffusivity. Right — its positive temperature dependence.
(Some material’s thermal conductivity is proportional to temperature). All images and figures created by Elizabeth Shen




