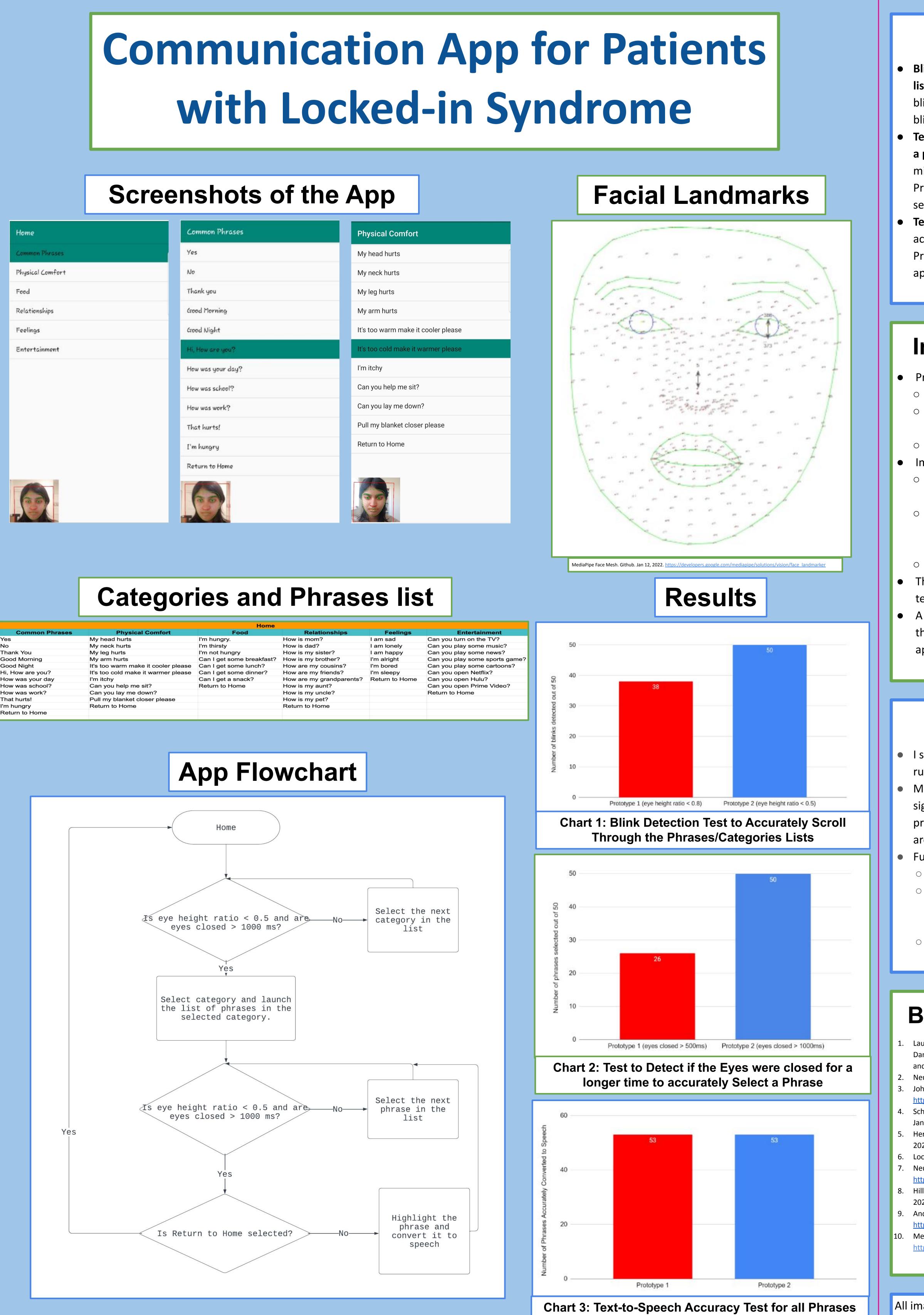
## Introduction

- Locked-in Syndrome (LIS) is a rare neurological disorder resulting from brain damage.
- Patients with LIS retain cognitive functions like thinking or listening but are unable to do anything except move their eyes and blink.
- LIS has no specific treatment or cure, and it is extremely rare for patients to recover any significant motor functions.
- During my search to find a science fair project, I came across an article about a police officer named Richard Marsh, who suffered from Locked-in Syndrome and recovered after 4 months and 9 days of painful rehab. The article left a deep impact on me, and I was determined to provide a voice to LIS patients by creating an app that'll make a positive difference in their lives.
- In my research, I discovered that the primary tool LIS patients use to communicate is a Letter Board, although communicating using this can be slow and tedious.
- There are also a few companies offering communication devices for Locked-in Syndrome patients, however all these solutions require additional costly devices:
- Neuro-Key which converts brain data into commands.
- Eyegaze is an eye-controlled technology.
- EyeControl detects voltage changes in the eye.

### **Engineering Goal / Framework**


- Engineering Goal: To develop an app that uses a smartphone's front-facing camera to track the patient's eye blinks, enabling them to navigate through the app and select desired phrases to be read aloud by the phone.
- The app will have a simple user interface with a home page that contains six categories of the most useful phrases that LIS patients could use to communicate.
- LIS patients will be able to navigate through the categories by blinking their eyes and can then select a specific category by closing their eyes for more than one second to launch a list of phrases in that category.
- When a user selects a phrase in a category by closing their eyes for more than one second, the phrase is read aloud through the app.
- The list of phrases in each category can be navigated in a circular loop.
- Each category has a "Return to Home" function to go back to the home page.

### Procedure

- Import all the essential Mediapipe libraries.
- Identify the facial landmarks to detect blinks. The height of facial landmarks 386 and 373 on the eyelids and the height of stationary points 5 and 4 on the nose are used to calculate the eye height ratio, which is then compared against a threshold value to determine whether the eye had blinked.
- Create a "Home" page category list and phrases using Android list view.
- Program the "Return to Home" selection and circular loop navigation for
- Program the blinking function to navigate through the list and the phrase selection when the eye is closed for more than one second.
- 6. Use the Text-to-Speech class to convert the selected phrase to speech.

### **Testing Procedure**

- Blink detection test to accurately scroll through the phrases/categories lists • Blink once and check if the app detected the blink for an eye height ratio of 0.8 and moved to the next category / phrase.
  - Run this test 50 times on different phrases and check results.
  - If the app does not detect 50 blinks accurately, modify eye height ratio to 0.5 and repeat test
- Test to detect if the eyes were closed for a longer time to accurately select a phrase
  - Blink to any category or phrase and close eyes for more than 500 milliseconds.
  - Run this test 50 times and check results.
  - If the app does not detect the long eye closed 50 times, modify
- threshold to 1000 milliseconds to detect eyes closed and repeat test. • Text-to-Speech accuracy test for all phrases
  - Blink to any phrase and close eyes for more than 1000 milliseconds.
  - Run this test for all 53 phrases and check if text to speech is accurate.
  - If the app does not accurately convert text to speech for all phrases, check code for any errors, and repeat test.



| Common Phrases   | Physical            |
|------------------|---------------------|
| Yes              | My head hurts       |
| No               | My neck hurts       |
| Thank You        | My leg hurts        |
| Good Morning     | My arm hurts        |
| Good Night       | It's too warm make  |
| Hi, How are you? | It's too cold make  |
| How was your day | I'm itchy           |
| How was school?  | Can you help me     |
| How was work?    | Can you lay me do   |
| That hurts!      | Pull my blanket clo |
| I'm hunary       | Return to Home      |

| Relationships           |
|-------------------------|
| low is mom?             |
| low is dad?             |
| low is my sister?       |
| low is my brother?      |
| low are my cousins?     |
| low are my friends?     |
| low are my grandparents |
| low is my aunt?         |
| low is my uncle?        |
| low is my pet?          |
| aturn to Homo           |



## Results

• Blink detection test to accurately scroll through the phrases/categories lists: Prototype 1 with an eye height ratio of 0.8 detected only 38 out of 50

- blinks, whereas Prototype 2 with an eye height ratio of 0.5 detected all 50 blinks, showing that the 0.5 ratio is more effective.
- Test to detect if the eyes were closed for a longer time to accurately select a phrase: Prototype 1 with a threshold of eyes closed time greater than 500 milliseconds, accurately selected only 26 out of 50 phrases, whereas Prototype 2 with a threshold greater than 1000 milliseconds successfully
- selected all 50 phrases, showing that the latter is more efficient.
- Text-to-Speech accuracy test for all phrases: Text-to-speech module accurately converted all the phrases to speech accurately.
- Prototype 2 of the app met my engineering goal of developing a free mobile app that will enable LIS patients to communicate by blinking their eyes.

## Interpretation of Data / Discussion

- Prototype 2 of the app fulfilled the success criteria by:
- Detecting 50 out of 50 blinks to scroll through the lists of phrases. • Detecting 50 out of 50 eyes closed for more than 1 second to select a phrase.
- Converting all 53 of the phrases to speech.
- Improvements made from Prototype 1 to 2 were:
- Changing the eye height ratio from 0.8 to 0.5 to detect blinking accurately.
- Changing the eyes closed time for phrase selection from 500 milliseconds to 1000 milliseconds to detect eyes closed for more than one second accurately
- Fixed several bugs.
- The key learnings included designing and developing an Android app, testing, resolving any issues, and effectively managing time.
- A few companies have developed communication platforms for LIS patients that require expensive additional devices, whereas I have developed a free app that can be downloaded on any Android device.

# **Conclusion / Further Research**

- I successfully developed a free Communication App for LIS patients that can run on any Android device with a front-facing camera.
- My final product exceeded my expectations for ease of use and it will significantly improve the quality of life of patients suffering from LIS by
- providing them with a voice and enabling them to communicate with those around them.
- Future enhancements for the app:
- Develop an AI based letter board to add custom phrases.
- Add user level customizations:
  - Changing the voice settings to male or female
  - Changing the voice output to a different language.
- Develop an iOS app.

# **Bibliography / Selected References**

Laureys, S. Pellas, F.P. Van Eeckhout, P. V. E. Ghorbel, S. Schnakers, C. Perrin, F. Berré, J. Faymonville, ME. Pantke, KH. Damas, F. Lamy, M. Moonen, G. and Goldman, S. The locked-in syndrome: what is it like to be conscious but paralyzed and voiceless?. Prog Brain Res. 2005. Jan 9, 2023. https://pubmed.ncbi.nlm.nih.gov/16186044/

- NeuroKey. Wyss Center. Jan 9, 2022. https://wysscenter.ch/advances/neurokey Johnson E. R. Life After Locked-In. Rush Stories. June 13, 2022. Jan 9, 2022.
- https://www.rush.edu/news/life-after-locked
- Schnetzer, L., McCoy, M., Bergmann, J., Kunz, A., Leis, S., & Trinka, E. Locked-in syndrome revisited. March 29, 2021. Jan 10 2022. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10064471/
- Herring, A. A Key to Communication for Locked-in Syndrome Patients. News@Northeastern. April 29, 2014. Jan 10, 2022. https://news.northeastern.edu/2014/04/29/key-to-locked-in-syndrome/

Locked-in Syndrome. Rare Diseases. November 23, 2022. https://rarediseases.org/rare-diseases/locked-in-syndrome/ Neurotechnology holds promise for chronic stroke patients. Wyss Center. January 7, 2019. November 28, 2022. https://wysscenter.ch/updates/neurotechnology-holds-promise-for-chronic-stroke-patients

- Hill, A. Locked-in syndrome: rare survivor Richard Marsh recounts his ordeal. The Guardian. August 7, 2012. Jan 9, 2022. https://www.theguardian.com/world/2012/aug/07/locked-in-syndrome-richard-marsh Android App Development with Kotlin | Beginner to Advanced. Udemy. November 2022. Jan 12, 2022.
- https://www.udemy.com/course/android-app-development-with-kotlin-beginner-to-advanced/
- MediaPipe Face Mesh. Github. Jan 12, 2022.
- https://developers.google.com/mediapipe/solutions/vision/face\_landmarker